Advertisement

Steel in Translation

, Volume 48, Issue 7, pp 458–462 | Cite as

Macro- and Micromechanics of Pearlitic-Steel Deformation in Multistage Wire Production

  • D. V. KonstantinovEmail author
  • A. G. Korchunov
  • M. V. Zaitseva
  • O. P. Shiryaev
  • D. G. Emaleeva
Article
  • 9 Downloads

Abstract

Ninefold drawing of pearlitic steel wire is investigated. On the basis of multiscale computer models, the behavior of pearlite colonies at the surface of the wire and in its central layer is analyzed. The key factors are the orientation of the cementite lamellae relative to the drawing axis, the interlamellae distance, and the shape of the cementite inclusions. On the basis of finite-element models, the laws governing the reorientation of the pearlite colonies, change in shape and size of the cementite lamellae, and localization of the deformation in the ferrite are determined. The model results are verified by means of metallographic results and industrial experiments.

Keywords

wire drawing pearlitic steel multiscale computer models cementite lamellae lamellae orientation interlamellae distance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hohenwarter, A., et al., Ultra-strong and damage tolerant metallic bulk materials: A lesson from nanostructured pearlitic steel wires, Sci. Rep., 2016, vol. 6. doi 10.1038/srep33228Google Scholar
  2. 2.
    Izotov, V.I., Pozdnyakov, V.A., Luk’yanenko, E.V., et al., Influence of the pearlite fineness on the mechanical properties, deformation behavior, and fracture characteristics of carbon steel, Phys. Met. Metallogr., 2007, vol. 103, pp. 519–529.CrossRefGoogle Scholar
  3. 3.
    Toribio, J., et al., Role of the microstructure on the mechanical properties of fully pearlitic eutectoid steels, Fratt. Integrita Strutturale, 2014, vol. 30, pp. 424–430.CrossRefGoogle Scholar
  4. 4.
    Tomota, Y., Suzuki, T., Kanie, A., et al., In situ neutron diffraction of heavily drawn steel wires with ultrahigh strength under tensile loading, Acta Mater., 2005, vol. 53, pp. 463–467.CrossRefGoogle Scholar
  5. 5.
    Shibanuma, K., Aihara, S., and Ohtsuka, S., Observation and quantification of crack nucleation in ferritecementite steel, ISIJ Int., 2014, vol. 54, pp. 1719–1728.CrossRefGoogle Scholar
  6. 6.
    Li, Y.J., Choi, P., Goto, S., et al., Evolution of strength and microstructure during annealing of heavily colddrawn 6.3 gpa hypereutectoid pearlitic steel wire, Acta Mater., 2012, vol. 60, pp. 4005–4016.CrossRefGoogle Scholar
  7. 7.
    Zhang, X., Hansen, N., Godfrey, A., and Huang, X., Microstructural evolution, strengthening mechanisms and strength structure relationship in cold-drawn pearlitic steel wire, Proc. 33rd Risø Int. Symp. on Materials Science, Roskilde: Tech. Univ. Denmark, 2012, vol. 33, pp. 407–416.Google Scholar
  8. 8.
    Zelin, M., Microstructure evolution in pearlitic steels during wire drawing, Acta Mater., 2002, vol. 50, pp. 4431–4447.CrossRefGoogle Scholar
  9. 9.
    Suliga, M., Kruzel, R., Garstka, T., and Gazdowicz, J., The influence of drawing speed on structure changes in high carbon steel wires, Metalurgija (Zagreb, Croatia), 2015, vol. 54, no. 1, pp. 161–164.Google Scholar
  10. 10.
    Brandaleze, E., Structural evolution of pearlite in steels with different carbon content under drastic deformation during cold drawing, Proc. Mater. Sci., 2015, vol. 8, pp. 1023–1030.CrossRefGoogle Scholar
  11. 11.
    Gerstein, G., Nürnberger, F., et al., Structural evolution of thin lamellar cementite during cold drawing of eutectoid steels, Proc. Eng., 2014, vol. 81, pp. 694–699.CrossRefGoogle Scholar
  12. 12.
    Muskalski, Z. and Milenin, A., Development of finite element model of reorientation of cementite lamellae in pearlite colonies in wire drawing process for wires made from high carbon steel, Solid State Phenom., 2010, vol. 165, pp. 136–141.CrossRefGoogle Scholar
  13. 13.
    Muskalski, Z., Milenin, A., and Kustra, P., The multiscale FEM simulation of wire fracture during drawing of perlitic steel, Mater. Sci. Forum, 2008, vols. 575–578, pp. 1433–1438.Google Scholar
  14. 14.
    Milenin, A., Muskalski, Z., Wiewiyrowska, S., and Kustra, P., The multi-scale FEM simulation of the drawing processes of high carbon steel, J. Achiev. Mater. Manuf. Eng., 2007, vol. 23, pp. 71–74.Google Scholar
  15. 15.
    Sadeghpour, S., Developing very fine nanopearlitic structure in a high carbon steel wire before drawing, Int. J. Iron Steel Soc. Iran, 2011, vol. 8, pp. 1–4.Google Scholar
  16. 16.
    Peng, X., Fan, J., and Zeng, J., Microstructure-based description for the mechanical behavior of single pearlitic colony, Int. J. Solids Struct., 2002, vol. 39, pp. 435–448.CrossRefGoogle Scholar
  17. 17.
    Konstantinov, D. and Korchunov, A., Multiscale simulation of cold axisymmetric deformation processes, Key Eng. Mater., 2016, vol. 685, pp. 18–22.CrossRefGoogle Scholar
  18. 18.
    Konstantinov, D., Bzowski, K., Korchunov, A., et al., Computer simulation of transformation during TRIP steel rod drawing, Key Eng. Mater., 2016, vol. 716, pp. 620–631.CrossRefGoogle Scholar
  19. 19.
    Liu, Y.D., Jiang, Q.W., Wang, G., et al., Influence of microstructures and textures on the torsional behavior of pearlitic wires, J. Mater. Sci. Technol., 2005, vol. 21, pp. 357–360.CrossRefGoogle Scholar
  20. 20.
    Hu, X., van Houtte, P., Liebeherr, M., et al., Modeling work hardening of pearlitic steels by phenomenological and taylortype micromechanical models, Acta Mater., 2006, vol. 54, pp. 1029–1040.CrossRefGoogle Scholar
  21. 21.
    Zolotorevsky, N.Yu., Vasiliev, D.M., and Titovets, Yu.F., X-ray study of microstresses in lamellar pearlite, Mater. Sci. Forum, 2005, vols. 495–497, pp. 1511–1516.Google Scholar
  22. 22.
    Fang, F., Zhao, Y., Liu, P., et al., Deformation of cementite in cold drawn pearlitic steel wire, Mater. Sci. Eng., A, 2014, vol. 608, pp. 11–15.CrossRefGoogle Scholar
  23. 23.
    Zhou, L., Zhao, Y., and Fang, F., Effect of reserved texture on mechanical properties of cold drawn pearlitic steel wire, Adv. Mater. Res., 2014, vol. 936, pp. 1948–1952.CrossRefGoogle Scholar
  24. 24.
    Fang, F., Zhou, L., Hub, X., et al., Microstructure and mechanical properties of cold-drawn pearlitic wires affect by inherited texture, Mater. Des., 2015, vol. 79, pp. 60–67.CrossRefGoogle Scholar
  25. 25.
    Toribio, J., González, B., and Matos, J., Microstructure and mechanical properties in progressively drawn pearlitic steel, Mater. Trans., 2014, vol. 55, pp. 93–98.CrossRefGoogle Scholar
  26. 26.
    Guo, N., Luan, B.F., Wang, B.S., and Liu, Q., Microstructure and texture evolution in fully pearlitic steel during wire drawing, Sci. China: Technol. Sci., 2013, vol. 56, pp. 1139–1146.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • D. V. Konstantinov
    • 1
    Email author
  • A. G. Korchunov
    • 1
  • M. V. Zaitseva
    • 2
  • O. P. Shiryaev
    • 2
  • D. G. Emaleeva
    • 1
  1. 1.Nosov Magnitogorsk State Technical UniversityMagnitogorskRussia
  2. 2.Magnitogorsk Metalware PlantMagnitogorskRussia

Personalised recommendations