Steel in Translation

, Volume 44, Issue 6, pp 418–421 | Cite as

Structural strength and corrosion resistance of nanostructured steel 10

  • R. Z. Valiev
  • G. V. Klevtsov
  • N. A. Klevtsova
  • V. M. Kushnarenko
  • A. V. Ganeev
Article

Abstract

The ultrafine-grain steel 10 obtained by equal-channel angular pressing at 200°C is investigated. The structural strength of the steel samples is analyzed, with tensile tests and assessment of the impact strength and crack resistance. The strength of steel increases by a factor of 2.5 after equal-channel angular pressing. In the specified conditions, such treatment does not change the cold-brittleness threshold of steel 10. However, the interval of ductile-brittle transition becomes narrower. Calculations show that the crack resistance K1C of steel 10 with an ultrafine grain structure is somewhat greater than that of the regular steel. The corrosion rate of uncoated steel 10 samples after equal-channel angular pressing is somewhat greater than in the initial state. However, the corrosion rate of coated steel 10 samples after equal-channel angular pressing is half that in the initial state. The significance of these findings is discussed.

Keywords

low-carbon steel 10 equal-channel angular pressing mechanical properties ultrafine grain structure corrosion resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Valiev, R.Z., Kozlov, E.V., Ivanov, Yu.F., Lian, J., Nazarov, A.A., and Baudelet, B., Acta Metall. Mater., 1994, vol. 42,issue 7, pp. 2467–2475.CrossRefGoogle Scholar
  2. 2.
    Kozlov, E.V., Koneva, N.A., Zhdanov, A.N., et al., Fiz. Mezomekhan., 2004, vol. 7, no. 4, pp. 93–113.Google Scholar
  3. 3.
    Kozlov, E.V., Koneva, N.A., and Zhdanov, A.N., Fiz. Mezomekhan., 2007, vol. 10, no. 3, pp. 95–103.Google Scholar
  4. 4.
    Valiev, R.Z. and Aleksandrov, I.V., Ob’emnye nanostrukturnye metallicheskie materialy: poluchenie, struktura i svoistva (Bulk Nanostructured Metals: Production, Structure, and Properties), Moscow: IKTs Akademkniga, 2007.Google Scholar
  5. 5.
    Gusev, A.I. and Rempel’, A.A., Nanokristallicheskie materialy (Nanocrystalline Materials), Moscow: Fizmatlit, 2000.Google Scholar
  6. 6.
    Valiev, R.Z., Semenova, I.P., Latysh, V.V., et al., Ross. Nanotekhnol., 2008, vol. 3, nos. 9–10, pp. 80–89.Google Scholar
  7. 7.
    Andrievskii, R.A. and Glezer, A.M., Usp. Fiz. Nauk, 2009, vol. 179, no. 4, pp. 337–358.CrossRefGoogle Scholar
  8. 8.
    Sabirov, I., Valiev, R.Z., Semenova, I.P., and Pippan, R., Metall. Mater. Trans. A, 2010, vol. 41, March, pp. 727–733.CrossRefGoogle Scholar
  9. 9.
    Klevtsov, G.V., Botvina, L.R., Klevtsova, N.A., and Limar’, L.V., Fraktodiagnostika razrusheniya metallicheskikh materialov i konstruktsii (Fractodiagnostics of the Failure of Metal Materials and Structures), Moscow: Izd. MISiS, 2007.Google Scholar
  10. 10.
    Klevtsov, G.V., Botvina, L.R., Grankova, L.P., et al., Recommendations R 50-54-52/2-94: Strength Calculations and Tests: X-Ray Structural Analysis of Fractures: X-Ray Study of Metal Fractures, Moscow: VNIINMASh Gosstandarta Rossii, 1994.Google Scholar
  11. 11.
    Klevtsov, G.V., Shaurova, N.K., Botvina, L.R., et al., Recommendations R 50-54-52-88: Strength Calculations and Tests: X-Ray Structural Analysis of Fractures: Determining the Depth of Plastic-Deformation Zones under the Fracture Surface, Moscow: VNIINMASh Gosstandarta SSSR, 1988.Google Scholar
  12. 12.
    Klevtsov, G.V., Valiev, R.Z., Raab, G.I., et al., Deform. Razrush. Mater., 2011, no. 8, pp. 9–13.Google Scholar
  13. 13.
    Sabirov, I., Murashkin, M.Yu., and Valiev, R.Z., Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development, Mater. Sci. Eng. A, 2013, vol. 560, pp. 1–24.CrossRefGoogle Scholar
  14. 14.
    Sokol, I.Ya., Ul’yanin, E.A., Fel’dgandler, E.G., et al., Struktura i korroziya metallov i splavov: Atlas. Sprav. izd. (Structure and Corrosion of Metals and Alloys: A Handbook), Moscow: Metallurgiya, 1989.Google Scholar
  15. 15.
    Karavaeva, M.V., Kiseleva, S.K., Abramova, M.M., et al., Nanoinzheneriya, 2013, no. 10(28), pp. 30–35.Google Scholar
  16. 16.
    Valiev, R.Z., Murashkin, M.Yu., Ganeev, A.V., and Enikeev, N.A., Phys. Met. Metallogr., 2012, vol. 113, no. 13, pp. 1193–1201.CrossRefGoogle Scholar
  17. 17.
    Sauvage, X., Ganeev, A., Enikeev, N., Murashkin, M., Valiev, R., and Ivanisenko, Y., Adv. Eng. Mater., 2012, vol. 14, no. 11, pp. 968–974.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • R. Z. Valiev
    • 1
    • 2
  • G. V. Klevtsov
    • 3
  • N. A. Klevtsova
    • 4
  • V. M. Kushnarenko
    • 4
  • A. V. Ganeev
    • 1
  1. 1.Ufa State Aviation-Technical UniversityUfaRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Tolyatti State UniversityTolyattiRussia
  4. 4.Orenburg State UniversityOrenburgRussia

Personalised recommendations