SOX9 as One of the Central Units of Regulation Axis of Pancreas Embryogenesis and Cancer Progression

  • 9 Accesses


The embryonic development of all body systems is controlled by coordinated interactions of a group of genes encoding master regulators of development, which determine the fate of cells in the process of differentiation. These genes are often involved in the processes of malignant degeneration of cells. Hence, they are considered as targets of targeted gene therapy in the development of modern approaches to cancer treatment. One of the most aggressive forms of cancer is pancreatic ductal adenocarcinoma (PDAC). Thus, the study of pancreas master regulators genes is a challenging task. This review is devoted to SOX9, which is one of the key master regulators of pancreatic development and is a crucial factor in the induction and progression of PDAC.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    Antebi, Y.E., Nandagopal, N., and Elowitz, M.B., An operational view of intercellular signaling pathways, Curr. Opin. Syst. Biol., 2017, vol. 1, pp. 16–24.

  2. 2

    Perrimon, N., Pitsouli, C., and Shilo, B.-Z., Signaling mechanisms controlling cell fate and embryonic patterning, Cold Spring Harbor Perspect. Biol., 2012, vol. 4, no. 8, p. a005975.

  3. 3

    Neph, S., Stergachis, A.B., Reynolds, A., Sandstrom, R., Borenstein, E., and Stamatoyannopoulos, J.A., Circuitry and dynamics of human transcription factor regulatory networks, Cell, 2012, vol. 150, no. 6, pp. 1274–1286.

  4. 4

    Kondratyeva, L.G., Vinogradova, T.V., Chernov, I.P., and Sverdlov, E.D., Master transcription regulators specifying cell-lineage fates in development as possible therapeutic targets in oncology, Russ. J. Genet., 2015, vol. 51, no. 11, pp. 1049–1059.

  5. 5

    Chan, S.S.-K. and Kyba, M., What is a master regulator?, J. Stem Cell Res. Ther., 2013, vol. 3, p. 114.

  6. 6

    Ma, Y., Zhang, P., Wang, F., Yang, J., Yang, Z., and Qin, H., The relationship between early embryo development and tumorigenesis, J. Cell. Mol. Med., 2010, vol. 14, no. 12, pp. 2697–2701.

  7. 7

    Hadjimichael, C., Chanoumidou, K., Papadopoulou, N., Arampatzi, P., Papamatheakis, J., and Kretsovali, A., Common stemness regulators of embryonic and cancer stem cells, World J. Stem Cells, 2015, vol. 7, no. 9, pp. 1150–1184.

  8. 8

    Thiery, J.P., Acloque, H., Huang, R.Y.J., and Nieto, M.A., Epithelial-mesenchymal transitions in development and disease, Cell, 2009, vol. 139, no. 5, pp. 871–890.

  9. 9

    Seymour, P.A., Sox9: A master regulator of the pancreatic program, Rev. Diabetic Stud., 2014, vol. 11, no. 1, pp. 51–83.

  10. 10

    Bowles, J., Schepers, G., and Koopman, P., Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators, Dev. Biol., 2000, vol. 227, no. 2, pp. 239–255.

  11. 11

    Reményi, A., Lins, K., Nissen, L.J., Reinbold, R., Schöler, H., and Wilmanns, M., Crystal structure of a POU_HMG_DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers, Genes Dev., 2003, vol. 17, no. 16, pp. 2048–2059.

  12. 12

    She, Z.Y. and Yang, W.X., SOX family transcription factors involved in diverse cellular events during development, Eur. J. Cell Biol., 2015, vol. 94, no. 12, pp. 547–563.

  13. 13

    Kamachi, Y. and Kondoh, H., Sox proteins: regulators of cell fate specification and differentiation, Development, 2013, vol. 140, no. 20, pp. 4129–4144.

  14. 14

    Jo, A., Denduluri, S., Zhang, B., Wang, Z., Yin, L., Yan, Z., et al., The versatile functions of Sox9 in development, stem cells, and human diseases, Genes Dis., 2014, vol. 1, no. 2, pp. 149–161.

  15. 15

    Malki, S., Boizet-Bonhoure, B., and Poulat, F., Shuttling of SOX proteins, Int. J. Biochem. Cell Biol., 2010, vol. 42, no. 3, pp. 411–416.

  16. 16

    Tsuda, M., Takahashi, S., Takahashi, Y., and Asahara, H., Transcriptional co-activators CREB-binding protein and p300 regulate chondrocyte-specific gene expression via association with Sox9, J. Biol. Chem., 2003, vol. 278, no. 29, pp. 27224–27229.

  17. 17

    Kawakami, Y., Tsuda, M., Takahashi, S., Taniguchi, N., Esteban, C.R., Zemmyo, M., et al., Transcriptional coactivator PGC-1alpha regulates chondrogenesis via association with Sox9, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, no. 7, pp. 2414–2419.

  18. 18

    Hattori, T., Coustry, F., Stephens, S., Eberspaecher, H., Takigawa, M., Yasuda, H., et al., Transcriptional regulation of chondrogenesis by coactivator Tip60 via chromatin association with Sox9 and Sox5, Nucleic Acids Res., 2008, vol. 36, no. 9, pp. 3011–3024.

  19. 19

    Bernard, P., Tang, P., Liu, S., Dewing, P., Harley, V.R., and Vilain, E., SOX9 is required for chondrogenesis, but not for sex determination, Hum. Mol. Genet., 2003, vol 12, no. 14, pp. 1755–1765.

  20. 20

    Bridgewater, L.C., Walker, M.D., Miller, G.C., Ellison, T.A., Holsinger, L.D., Potter, J.L., et al., Adjacent DNA sequences modulate Sox9 transcriptional activation at paired Sox sites in three chondrocyte-specific enhancer elements, Nucleic Acids Res., 2003, vol. 31, no. 5, pp. 1541–1553.

  21. 21

    Huang, Y.H., Jankowski, A., Cheah, K.S.E., Prabhakar, S., and Jauch, R., SOXE transcription factors form selective dimers on non-compact DNA motifs through multifaceted interactions between dimerization and high-mobility group domains., Sci. Rep., 2015, vol. 5, p. 10398.

  22. 22

    Kamachi, Y., Uchikawa, M., and Kondoh, H., Pairing SOX off: With partners in the regulation of embryonic development, Trends Genet., 2000, vol. 16, no. 4, pp. 182–187.

  23. 23

    Huang, W., Zhou, X., Lefebvre, V., and de Crombrugghe, B., Phosphorylation of SOX9 by cyclic AMP-dependent protein kinase A enhances SOX9’s ability to transactivate a Col2a1 chondrocyte-specific enhancer, Mol. Cell. Biol., 2000, vol. 20, no. 11, pp. 4149–4158.

  24. 24

    Oh, H.J., Kido, T., and Lau, Y.F., PIAS1 interacts with and represses SOX9 transactivation activity, Mol. Reprod. Dev., 2007, vol. 74, no. 11, pp. 1446–1455.

  25. 25

    Gordon, C.T., Tan, T.Y., Benko, S., FitzPatrick, D., Lyonnet, S., and Farlie, P.G., Long-range regulation at the SOX9 locus in development and disease, J. Med. Genet., 2009, vol. 46, no. 10, pp. 649–656.

  26. 26

    Mead, T.J., Wang, Q., Bhattaram, P., Dy, P., Afelik, S., Jensen, J., et al., A far-upstream (–70 kb) enhancer mediates Sox9 auto-regulation in somatic tissues during development and adult regeneration, Nucleic Acids Res., 2013, vol. 41, no. 8, pp. 4459–4469.

  27. 27

    Sun, L., Mathews, L.A., Cabarcas, S.M., Zhang, X., Yang, A., Zhang, Y., et al., Epigenetic regulation of SOX9 by the NF-κB signaling pathway in pancreatic cancer stem cells, Stem Cells, 2013, vol. 31, no. 8, pp. 1454–1466.

  28. 28

    Larsen, H.L. and Grapin-Botton, A., The molecular and morphogenetic basis of pancreas organogenesis, Semin. Cell Dev. Biol., 2017, vol. 66, pp. 51–68.

  29. 29

    Bastidas-Ponce, A., Scheibner, K., Lickert, H., and Bakhti, M., Cellular and molecular mechanisms coordinating pancreas development, Development, 2017, vol. 144, no. 16, pp. 2873–2888.

  30. 30

    Jennings, R.E., Berry, A.A., Strutt, J.P., Gerrard, D.T., and Hanley, N.A., Human pancreas development, Development, 2015, vol. 142, no. 18, pp. 3126–3137.

  31. 31

    Yin, C., Molecular mechanisms of Sox transcription factors during the development of liver, bile duct, and pancreas, Semin. Cell Dev. Biol., 2017, vol. 63, pp. 68–78.

  32. 32

    Seymour, P.A., Freude, K.K., Tran, M.N., Mayes, E.E., Jensen, J., Kist, R., et al., SOX9 is required for maintenance of the pancreatic progenitor cell pool, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, no. 6, pp. 1865–1870.

  33. 33

    Piper, K., Ball, S.G., Keeling, J.W., Mansoor, S., Wilson, D.I., and Hanley, N.A., Novel SOX9 expression during human pancreas development correlates to abnormalities in Campomelic dysplasia, Mech. Dev., 2002, vol. 116, nos. 1–2, pp. 223–226.

  34. 34

    Shih, H.P., Seymour, P.A., Patel, N.A., Xie, R., Wang, A., Liu, P.P., et al., A gene regulatory network cooperatively controlled by Pdx1 and Sox9 governs lineage allocation of foregut progenitor cells, Cell Rep., 2015, vol. 13, no. 2, pp. 326–336.

  35. 35

    Poll, A.V., Pierreux, C.E., Lokmane, L., Haumaitre, C., Achouri, Y., Jacquemin, P., et al., A vHNF1/TCF2-HNF6 cascade regulates the transcription factor network that controls generation of pancreatic precursor cells, Diabetes, 2006, vol. 55, no. 1, pp. 61–69.

  36. 36

    Gao, N., LeLay, J., Vatamaniuk, M.Z., Rieck, S., Friedman, J.R., and Kaestner, K.H., Dynamic regulation of Pdx1 enhancers by Foxa1 and Foxa2 is essential for pancreas development, Genes Dev., 2008, vol. 22, pp. 3435–3448.

  37. 37

    Kawaguchi, Y., Cooper, B., Gannon, M., Ray, M., MacDonald, R.J., and Wright, C.V.E., The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors, Nat. Genet., 2002, vol. 32, no. 1, pp. 128–134.

  38. 38

    Cirillo, L.A., Lin, F.R., Cuesta, I., Friedman, D., Jarnik, M., and Zaret, K.S., Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4, Mol. Cell, 2002, vol. 9, pp. 279–289.

  39. 39

    Kaestner, K.H., The FoxA factors in organogenesis and differentiation, Curr. Opin. Genet. Dev., 2010, vol. 20, no. 5, pp. 527–532.

  40. 40

    Zinovyeva, M.V., Kuzmich, A.I., Monastyrskaya, G.S., and Sverdlov, E.D., The role of the FOXA subfamily factors in embryonic development and carcinogenesis of the pancreas, Mol. Genet., Microbiol. Virol., 2016, vol. 31, no. 3, pp. 135–142.

  41. 41

    Lee, C.S., Sund, N.J., Vatamaniuk, M.Z., Matschinsky, F.M., Stoffers, D.A., and Kaestner, K.H., Foxa2 controls Pdx1 gene expression in pancreatic beta-cells in vivo, Diabetes, 2002, vol. 51, no. 8, pp. 2546–2551.

  42. 42

    Lynn, F.C., Smith, S.B., Wilson, M.E., Yang, K.Y., Nekrep, N., and German, M.S., Sox9 coordinates a transcriptional network in pancreatic progenitor cells, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, no. 25, pp. 10500–10505.

  43. 43

    Dubois, C.L., Shih, H.P., Seymour, P.A., Patel, N.A., Behrmann, J.M., Ngo, V., et al., Sox9-haploinsufficiency causes glucose intolerance in mice, PLoS One, 2011, vol. 6, no. 8, p. e23131.

  44. 44

    Marshak, S., Benshushan, E., Shoshkes, M., Havin, L., Cerasi, E., and Melloul, D., Functional conservation of regulatory elements in the pdx-1 gene: PDX-1 and hepatocyte nuclear factor 3beta transcription factors mediate beta-cell-specific expression, Mol. Cell. Biol., 2000, vol. 20, no. 20, pp. 7583–7590.

  45. 45

    Weedon, M.N., Cebola, I., Patch, A.M., Flanagan, S.E., De Franco, E., Caswell, R., et al., Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis, Nat. Genet., 2014, vol. 46, no. 1, pp. 61–64.

  46. 46

    Seymour, P.A., Shih, H.P., Patel, N.A., Freude, K.K., Xie, R., Lim, C.J., et al., A Sox9/Fgf feed-forward loop maintains pancreatic organ identity, Development, 2012, vol. 139, no. 18, pp. 3363–3372.

  47. 47

    Pan, F.C., Bankaitis, E.D., Boyer, D., Xu, X., Van de Casteele, M., Magnuson, M.A., et al., Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration, Development, 2013, vol. 140, no. 4, pp. 751–764.

  48. 48

    Furuyama, K., Kawaguchi, Y., Akiyama, H., Horiguchi, M., Kodama, S., Kuhara, T., et al., Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine, Nat. Genet., 2011, vol. 43, no. 1, pp. 34–41.

  49. 49

    Shroff, S., Rashid, A., Wang, H., Katz, M.H., Abbruzzese, J.L., Fleming, J.B., et al., SOX9: A useful marker for pancreatic ductal lineage of pancreatic neoplasms, Hum. Pathol., 2014, vol. 45, no. 3, pp. 456–463.

  50. 50

    Schaffer, A.E., Freude, K.K., Nelson, S.B., and Sander, M., Nkx6 transcription factors and Ptf1a function as antagonistic lineage determinants in multipotent pancreatic progenitors, Dev. Cell, 2010, vol. 18, no. 6, pp. 1022–1029.

  51. 51

    Hoang, C.Q., Hale, M.A., Azevedo-Pouly, A., Elsässer, H.P., Deering, T.G., Willet, S.G., et al., Transcriptional maintenance of pancreatic acinar identity, differentiation and homeostasis by PTF1A, Mol. Cell. Biol., 2016, vol. 36, no. 24, pp. 3033–3047.

  52. 52

    Seymour, P.A., Freude, K.K., Dubois, C.L., Shih, H.P., Patel, N.A., and Sander, M., A dosage-dependent requirement for Sox9 in pancreatic endocrine cell formation, Dev. Biol., 2008, vol. 323, no. 1, pp. 19–30.

  53. 53

    Shih, H.P., Kopp, J.L., Sandhu, M., Dubois, C.L., Seymour, P.A., Grapin-Botton, A., et al., A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation, Development, 2012, vol. 139, no. 14, pp. 2488–2499.

  54. 54

    De Vas, M.G., Kopp, J.L., Heliot, C., Sander, M., Cereghini, S., and Haumaitre, C., Hnf1b controls pancreas morphogenesis and the generation of Ngn3+ endocrine progenitors, Development, 2015, vol. 142, no. 5, pp. 871–882.

  55. 55

    Jacquemin, P., Durviaux, S.M., Jensen, J., Godfraind, C., Gradwohl, G., Guillemot, F., et al., Transcription factor hepatocyte nuclear factor 6 regulates pancreatic endocrine cell differentiation and controls expression of the proendocrine gene ngn3, Mol. Cell. Biol., 2000, vol. 20, no. 12, pp. 4445–4454.

  56. 56

    Maestro, M.A., Boj, S.F., Luco, R.F., Pierreux, C.E., Cabedo, J., Servitja, J.M., et al., Hnf6 and Tcf2 (MODY5) are linked in a gene network operating in a precursor cell domain of the embryonic pancreas, Hum. Mol. Genet., 2003, vol. 12, no. 24, pp. 3307–3314.

  57. 57

    Oliver-Krasinski, J.M., Kasner, M.T., Yang, J., Crutchlow, M.F., Rustg, A.K., Kaestne, K.H., et al., The diabetes gene Pdx1 regulates the transcriptional network of pancreatic endocrine progenitor cells in mice, J. Clin. Invest., 2009, vol. 119, no. 7, pp. 1888–1898.

  58. 58

    Gouzi, M., Kim, Y.H., Katsumoto, K., Johansson, K., and Grapin-Botton, A., Neurogenin3 initiates stepwise delamination of differentiating endocrine cells during pancreas development, Dev. Dyn., 2011, vol. 240, no. 3, pp. 589–604.

  59. 59

    Bastidas-Ponce, A., Roscioni, S.S., Burtscher, I., Bader, E., Sterr, M., Bakhti, M., et al., Foxa2 and Pdx1 cooperatively regulate postnatal maturation of pancreatic β-cells, Mol. Metab., 2017, vol. 6, no. 6, pp. 524–534.

  60. 60

    Cancer Facts and Figures 2018, Atlanta, GA: American Cancer Society, 2018, pp. 1–71.

  61. 61

    Kopp, J.L., von Figura, G., Mayes, E., Liu, F.F., Dubois, C.L., Morris, J.P., et al., Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma, Cancer Cell, 2012, vol. 22, no. 6, pp. 737–750.

  62. 62

    Reichert, M., Blume, K., Kleger, A., Hartmann, D., and von Figura, G., Developmental pathways direct pancreatic cancer initiation from its cellular origin, Stem Cells Int., 2016, vol. 2016, p. 9298535.

  63. 63

    Murtaugh, L.C. and Keefe, M.D., Regeneration and repair of the exocrine pancreas, Annu. Rev. Physiol., 2015, vol. 77, no. 1, pp. 229–249.

  64. 64

    Guerra, C., Schuhmacher, A.J., Cañamero, M., Grippo, P.J., Verdaguer, L., Pérez-Galleg, L., et al., Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice, Cancer Cell, 2007, vol. 11, no. 3, pp. 291–302.

  65. 65

    Morris, J.P. IV, Cano, D.A., Sekine, S., Wang, S.C., and Hebrok, M., β-Catenin blocks Kras-dependent reprogramming of acini into pancreatic cancer precursor lesions in mice, J. Clin. Invest., 2010, vol. 120, no. 2, pp. 508–520.

  66. 66

    Jeannot, P., Callot, C., Baer, R., Duquesnes, N., Guerra, C., Guillermet-Guibert, J., et al., Loss of p27Kip1 promotes metaplasia in the pancreas via the regulation of Sox9 expression, Oncotarget, 2015, vol. 6, no. 34, pp. 35880–35892.

  67. 67

    Pinho, A.V., Rooman, I., Reichert, M., De Medts, N., Bouwens, L., Rustgi, A.K., et al., Adult pancreatic acinar cells dedifferentiate to an embryonic progenitor phenotype with concomitant activation of a senescence program that is present in chronic pancreatitis, Gut, 2011, vol. 60, no. 7, pp. 958–966.

  68. 68

    Prévot, P.P., Simion, A., Grimont, A., Colletti, M., Khalaileh, A., Van Den Steen, G., et al., Role of the ductal transcription factors HNF6 and Sox9 in pancreatic acinar-to-ductal metaplasia, Gut, 2012, vol. 61, no. 12, pp. 1723–1732.

  69. 69

    Wei, D., Wang, L., Yan, Y., Jia, Z., Gagea, M., Li, Z., et al., KLF4 is essential for induction of cellular identity change and acinar-to-ductal reprogramming during early pancreatic carcinogenesis, Cancer Cell, 2016, vol. 29, no. 3, pp. 324–338.

  70. 70

    He, P., Yang, J.W., Yang, V.W., and Bialkowska, A.B., Krüppel-like factor 5, increased in pancreatic ductal adenocarcinoma, promotes proliferation, acinar-to-ductal metaplasia, pancreatic intraepithelial neoplasia, and tumor growth in mice, Gastroenterology, 2018, vol. 154, no. 5, pp. 1494–1508.

  71. 71

    Miyatsuka, T., Kaneto, H., Shiraiwa, T., Matsuoka, T.A., Yamamoto, K., Kato, K., et al., Persistent expression of PDX-1 in the pancreas causes acinar-to-ductal metaplasia through Stat3 activation, Genes Dev., 2006, vol. 20, no. 11, pp. 1435–1440.

  72. 72

    Vinogradova, T.V. and Sverdlov, E.D., PDX1: A unique pancreatic master regulator constantly changes its functions during embryonic development and progression of pancreatic cancer, Biochemistry (Moscow), 2017, vol. 82, no. 8, pp. 887–893.

  73. 73

    Di Magliano, M.P. and Logsdon, C.D., Roles for KRAS in pancreatic tumor development and progression, Gastroenterology, 2013, vol. 144, no. 6, pp. 1220–1229.

  74. 74

    Zhou, H., Qin, Y., Ji, S., Ling, J., Fu, J., Zhuang, Z., et al., SOX9 activity is induced by oncogenic Kras to affect MDC1 and MCMs expression in pancreatic cancer, Oncogene, 2018, vol. 37, no. 7, pp. 912–923.

  75. 75

    Navas, C., Hernández-Porras, I., Schuhmacher, A.J., Sibilia, M., Guerra, C., and Barbacid, M., EGF receptor signaling is essential for K-Ras oncogene-driven pancreatic ductal adenocarcinoma, Cancer Cell, 2012, vol. 22, no. 3, pp. 318–330.

  76. 76

    Hessmann, E., Zhang, J.S., Chen, N.M., Hasselluhn, M., Liou, G.Y., Storz, P., et al., NFATc4 regulates Sox9 gene expression in acinar cell plasticity and pancreatic cancer initiation, Stem Cells Int., 2016, vol. 2016, p. 5272498.

  77. 77

    Chen, N.M., Singh, G., Koenig, A., Liou, G.Y., Storz, P., Zhang, J.S., et al., NFATc1 links EGFR signaling to induction of sox9 transcription and acinar-ductal trans-differentiation in the pancreas, Gastroenterology, 2015, vol. 148, no. 5, pp. 1024–1034.

  78. 78

    Grimont, A., Pinho, A.V., Cowley, M.J., Augereau, C., Mawson, A., Giry-Laterrière, M., et al., SOX9 regulates ERBB signaling in pancreatic cancer development, Gut, 2015, vol. 64, no. 11, pp. 1790–1799.

  79. 79

    Reichert, M., Takano, S., Von Burstin, J., Kim, S.B., Lee, J.S., Ihida-Stansbury, K., et al., The Prrx1 homeodomain transcription factor plays a central role in pancreatic regeneration and carcinogenesis, Genes Dev., 2013, vol. 27, no. 3, pp. 288–300.

  80. 80

    Gnoni, A., Licchetta, A., Scarpa, A., Azzariti, A., Brunetti, A.E., Simone, G., et al., Carcinogenesis of pancreatic adenocarcinoma. P. precursor lesions, Int. J. Mol. Sci., 2013, vol. 14, no. 10, pp. 19731–19762.

  81. 81

    von Figura, G., Fukuda, A., Roy, N., Liku, M.E., Morris, J.P. IV, Kim, G.E., et al., The chromatin regulator Brg1 suppresses formation of intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma, Nat. Cell Biol., 2014, vol. 16, no. 3, pp. 255–267.

  82. 82

    Roy, N., Malik, S., Villanueva, K.E., Urano, A., Lu, X., Von Figura, G., et al., Brg1 promotes both tumor-suppressive and oncogenic activities at distinct stages of pancreatic cancer formation, Genes Dev., 2015, vol. 29, no. 6, pp. 658–671.

  83. 83

    Wei, D., Kanai, M., Jia, Z., Le, X., and Xie, K., Kruppel-like factor 4 induces p27Kip1 expression in and suppresses the growth and metastasis of human pancreatic cancer cells, Cancer Res., 2008, vol. 68, no. 12, pp. 4631–4639.

  84. 84

    Benayoun, B.A. and Veitia, R.A., A post-translational modification code for transcription factors: sorting through a sea of signals, Trends Cell Biol., 2009, vol. 19, no. 5, pp. 189–197.

  85. 85

    Ji, Z. and Sharrocks, A.D., Changing partners: transcription factors form different complexes on and off chromatin, Mol. Syst. Biol., 2015, vol. 11, no. 1, p. 782.

  86. 86

    Taneri, B., Snyder, B., Novoradovsky, A., and Gaasterland, T., Alternative splicing of mouse transcription factors affects their DNA-binding domain architecture and is tissue specific, Genome Biol., 2004, vol. 5, no. 10, p. R75.

  87. 87

    Bailey, P., Chang, D.K., Nones, K., Johns, A.L., Patch, A.M., Gingras, M.C., et al., Genomic analyses identify molecular subtypes of pancreatic cancer, Nature, 2016, vol. 531, no. 7592, pp. 47–52.

  88. 88

    Roy, N., Takeuchi, K.K., Ruggeri, J.M., Bailey, P., Chang, D., Li, J., et al., PDX1 dynamically regulates pancreatic ductal adenocarcinoma initiation and maintenance, Genes Dev., 2016, vol. 30, no. 24, pp. 2669–2683.

  89. 89

    Wu, J., Liu, S., Yu, J., Zhou, G., Rao, D., Jay, C.M., et al., Vertically integrated translational studies of PDX1 as a therapeutic target for pancreatic cancer via a novel bifunctional RNAi platform, Cancer Gene Ther., 2014, vol. 21, no. 2, pp. 48–53.

  90. 90

    Song, Y., Washington, M.K., and Crawford, H.C., Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer, Cancer Res., 2010 vol. 70, no. 5, pp. 2115–2125.

  91. 91

    Russell, R., Perkhofer, L., Liebau, S., Lin, Q., Lechel, A., Feld, F.M., et al., Loss of ATM accelerates pancreatic cancer formation and epithelial-mesenchymal transition, Nat. Commun., 2015, vol. 6, p. 7677.

  92. 92

    Huang, J. and Guo, L., Knockdown of SOX9 inhibits the proliferation, invasion, and EMT in thyroid cancer cells, Oncol. Res., 2017, vol. 25, no. 2, pp. 167–176.

  93. 93

    Francis, J.C., Capper, A., Ning, J., Knight, E., de Bono, J., and Swain, A., SOX9 is a driver of aggressive prostate cancer by promoting invasion, cell fate and cytoskeleton alterations and epithelial to mesenchymal transition, Oncotarget, 2018, vol. 9, no. 7, pp. 7604–7615.

  94. 94

    Zhou, P., Li, B., Liu, F., Zhang, M., Wang, Q., Liu, Y., et al., The epithelial to mesenchymal transition (EMT) and cancer stem cells: Implication for treatment resistance in pancreatic cancer, Mol. Cancer, 2017, vol. 16, no. 1, p. 52.

  95. 95

    Kawai, T., Yasuchika, K., Ishii, T., Miyauchi, Y., Kojima, H., Yamaoka, R., et al., SOX9 is a novel cancer stem cell marker surrogated by osteopontin in human hepatocellular carcinoma, Sci. Rep., 2016, vol. 6, p. 30489.

  96. 96

    Guo, W., Keckesova, Z., Donaher, J.L., Shibue, T., Tischler, V., Reinhardt, F., et al., Slug and Sox9 cooperatively determine the mammary stem cell state, Cell, 2012, vol. 148, no. 5, pp. 1015–1028.

  97. 97

    Higashihara, T., Yoshitomi, H., Nakata, Y., Kagawa, S., Takano, S., Shimizu, H., et al., Sex determining region y Box 9 induces chemoresistance in pancreatic cancer cells by induction of putative cancer stem cell characteristics and its high expression predicts poor prognosis, Pancreas, 2017, vol. 46, no. 10, pp. 1296–1304.

  98. 98

    Morgunova, E. and Taipale, J., Structural perspective of cooperative transcription factor binding, Curr. Opin. Struct. Biol., 2017, vol. 47, pp. 1–8.

  99. 99

    Girardot, M., Bayet, E., Maurin, J., Fort, P., Roux, P., and Raynaud, P., SOX9 has distinct regulatory roles in alternative splicing and transcription, Nucleic Acids Res., 2018, vol. 46, no. 17, pp. 9106–9118.

Download references

Author information

Correspondence to S. S. Bulanenkova.

Ethics declarations


This article does not contain any studies involving animals or human participants performed by any of the authors.


The authors declare that they have no conflict of interest.

Additional information

Translated by M. Novikova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bulanenkova, S.S., Snezhkov, E.V. & Akopov, S.B. SOX9 as One of the Central Units of Regulation Axis of Pancreas Embryogenesis and Cancer Progression. Mol. Genet. Microbiol. Virol. 34, 159–169 (2019).

Download citation


  • pancreas
  • pancreatic ductal adenocarcinoma
  • acinar-to-ductal metaplasia
  • master gene
  • master regulator
  • SOX9
  • review