Molecular Genetics, Microbiology and Virology

, Volume 34, Issue 2, pp 131–139 | Cite as

Chitosan Nanoparticles-Mediated pCDNA3.1(–)-hcpD DNA Vaccine against Helicobacter pylori in BALB/c Mice

  • M. Nasr-Esfahani
  • A. DoostiEmail author
  • M. S. Jami


The gastric cancer is one of the most common carcinomas and the second cancer-related death in the world. The risk factors for this cancer include genetic factors and environmental factors such as Helicobacter pylori infection. The protein HcpD (HP0160) of H. pylori is a member of the cysteine-rich protein family that interacts with host immune systems. One of the modern approaches to stimulate the humoral and cellular immune systems against diseases is utilization of DNA vaccines. Using qPCR method, this study aimed to evaluate the expression level of cytokines genes including IL17, IL4, and interferon gamma (IFNγ) in BALB/c mice vaccinated with pCDNA3.1(–)-hcpD DNA vaccine against H. pylori. In this study, pCDNA3.1(–)-hcpD recombinant vector was prepared and transformed into E. coli to obtain a large number of plasmids. After plasmid purification and confirmation of the transformation by digestion and PCR, the chitosan nanoparticles were synthesized using ionic gelation method. The injectable solutions containing pCDNA3.1(–)-hcpD, pCDNA3.1(–)-hcpD + nanoparticles or pCDNA3.1 (empty vector as control group) were injected into BALB/c mice, separately. Then, the blood and tissues samples from each animal were collected and the expression levels of cytokine genes were examined by a qRT-PCR method. The IL-4 expression level was significantly decreased in pcDNA3.1(–)-hcpD + nanoparticle and pcDNA3.1(–)-hcpD groups (p < 0.001). Conversely, the expression level of IFNγ gene in both groups was increased significantly (p < 0.001). The expression level of IL17 gene showed no significant difference between DNA vaccine containing nanoparticle compare with pcDNA3.1(–)-hcpD (p > 0.05). During 15, 30 and 45 post-injection days, the expression level of hcpD decreased in hip tissue of mice vaccinated with pcDNA3.1(–)-hcpD and pcDNA3.1(–)-hcpD + nanoparticle although no significant difference found between the vaccinated groups (p > 0.05). pcDNA3.1(–)-hcpD vaccine can stimulate the immune system in vaccinated mice either as the sole agent or combined with chitosan nanoparticles. Therefore this method can be an effective way for immunization against H. pylori infection.


Helicobacter pylori cytokine genes DNA vaccine hcpD BALB/c mice 



This article was obtained from the MSc thesis. We would also like to sincere thanks from Research Deputy of Islamic Azad University of Shahrekord Branch and Biotechnology Research Center for their sincere cooperation.


The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.


  1. 1.
    Taddesse, G., Habteselassie, A., Desta, K., Esayas, S, and Bane, A., Association of dyspepsia symptoms and Helicobacter pylori infections in private higher clinic, Addis Ababa, Ethiopia, Ethiop. Med. J., 2011, vol. 49, no. 2, pp.109–116.PubMedGoogle Scholar
  2. 2.
    Mahachai, V., Vilaichone, R.K., Pittayanon, R., Roj-borwonwitaya, J., Leelakusolvong, S., Kositchaiwat, C., et al., Thailand consensus on Helicobacter pylori treatment 2015, Asian Pac. J. Cancer Prev., 2016, vol. 17, no. 5, pp. 2351–2360.PubMedGoogle Scholar
  3. 3.
    Sardarian, H., Fakheri, H., Hosseini, V., Taghvaei, T., Maleki, I., and Mokhtare, M., Comparison of hybrid and sequential therapies for Helicobacter pylori eradication in Iran: A prospective randomized trial, Helicobacter, 2013, vol. 18, pp. 129–134.CrossRefGoogle Scholar
  4. 4.
    Michel, A., Pawlita, M., Boeing, H., Gissmann, L., and Waterboer, T., Helicobacter pylori antibody patterns in Germany: A cross-sectional population study, Gut Pathog., 2014, vol. 6, p. 10.CrossRefGoogle Scholar
  5. 5.
    Marandi, F., Hatam, A., and Saybani, M.R., Diagnosing gastric cancer and ulcer using color domain and their classifications, J. Appl. Environ. Biol. Sci., 2015, vol. 5, no. 4, pp. 138–145.Google Scholar
  6. 6.
    Talebi Bezmin Abadi, A., Vaccine against Helicobacter pylori: Inevitable approach, World J. Gastroenterol., 2016, vol. 22, no. 11, pp. 3150–3157.CrossRefGoogle Scholar
  7. 7.
    Salimzadeh, L., Bagheri, N., Zamanzad, B., Azadegan Dehkordi, F., Rahimian, G., Hashemzadeh-Chaleshtori, M., et al., Frequency of virulence factors in Helicobacter pylori-infected patients with gastritis, Microb. Pathog., 2015, vol. 80, pp. 67–72.CrossRefGoogle Scholar
  8. 8.
    Bagheri, N., Azadegan-Dehkordi, F., Rafieian-Kopaei, M., Rahimian, G., Asadi-Samani, M., and Shirzad, H., Clinical relevance of Helicobacter pylori virulence factors in Iranian patients with gastrointestinal diseases, Microb. Pathog., 2016, vol. 100, pp. 154–162.CrossRefGoogle Scholar
  9. 9.
    Ogura, M., Perez, J.C., Mittl, P.R.E., Lee, H.-K., Dailide, G., Tan, S., et al., Helicobacter pylori evolution: lineage- specific adaptations in homologs of eukaryotic sel1-like genes, PLoS Comput. Biol., 2007, vol. 3, no. 8, p. e151.CrossRefGoogle Scholar
  10. 10.
    Deml, L., Aigner, M., Decker, J., Eckhardt, A., Schütz, C., Mittl, P.R.E., et al., Characterization of the Helicobacter pylori cysteine-rich protein A as a T-helper cell type 1 polarizing agent, Infect. Immun., 2005, vol. 73, no. 8, pp. 4732–4742.CrossRefGoogle Scholar
  11. 11.
    Kawai, M., Furuta, Y., Yahara, K., Tsuru, T., Oshima, K., Handa, N., et al., Evolution in an oncogenic bacterial species with extreme genome plasticity: Helicobacter pylori East Asian genomes, BMC Microbiol., 2011, vol. 11, p. 104.CrossRefGoogle Scholar
  12. 12.
    Mittl, P.R.E., Lüthy, L., Reinhardt, C., Joller, H. Detection of high titers of antibody against Helicobacter cysteine-rich proteins A, B, C, and E in Helicobacter pylori-infected individuals, Clin. Diagn. Lab. Immunol., 2003, vol. 10, no. 4, pp. 542–545.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Eslami, E., Doosti, A., Cloning and expression study of the hcpD gene of Helicobacter pylori, J. Ardabil Univ. Med. Sci., 2017, vol. 17, no. 1, pp. 46–57.Google Scholar
  14. 14.
    Li, W.Q., Ma, J.L., Zhang, L., Brown, L.M., Li, J.Y., Shen, L., et al., Effects of Helicobacter pylori treatment on gastric cancer incidence and mortality in subgroups, J. Natl. Cancer Inst., 2014, vol. 106, no. 7.
  15. 15.
    O’Morain, C. and Smith, S., Helicobacter pylori treatment failure: The rationale for alternative antibiotics, Digestion, 2016, vol. 93, no. 4, pp. 309–310.CrossRefGoogle Scholar
  16. 16.
    Zeng, M., Mao, X.H., Li, J.X., Tong, W.D., Wang, B., Zhang, Y.J., et al., Efficacy, safety, and immunogenicity of an oral recombinant Helicobacter pylori vaccine in children in China: A randomized, double-blind, placebo-controlled, phase 3 trial, Lancet, 2015, vol. 386, no. 10002, pp. 1457–1464.CrossRefGoogle Scholar
  17. 17.
    Wang, B., Pan, X., Wang, H., Zhou, Y., Zhu, J., Yang, J., et al., Immunological response of recombinant H. pylori multi-epitope vaccine with different vaccination strategies, Int. J. Clin. Exp. Pathol., 2014, vol. 7, no. 10, pp. 6559–6566.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Flingai, S., Czerwonko, M., Goodman, J., Kudchodkar, S.B., Muthumani, K., and Weiner, D.B., Synthetic DNA vaccines: Improved vaccine potency by electroporation and co-delivered genetic adjuvants, Front. Immunol., 2013, vol. 4, p. 354.CrossRefGoogle Scholar
  19. 19.
    Doosti, A., Ghasemi-Dehkordi, P., Kargar, M., and Sharifi, A., Generation of divalent DNA vaccine based on p39 and shiga-like toxin 2 (stx2) genes, Genetika, 2015, vol. 47, no. 2, pp. 499–507.CrossRefGoogle Scholar
  20. 20.
    Guo, L., Yang, H., Tang, F., Yin, R., Liu, H., Xiaojuan, G., et al., Oral immunization with a multivalent epitope-based vaccine, based on NAP, urease, HSP60, and HpaA, providestherapeutic effect on H. pylori infection in Mongolian gerbils, Front. Cell. Infect. Microbiol., 2017, vol. 7, p. 349.CrossRefGoogle Scholar
  21. 21.
    Chen, J., Li, N., and She, F. Helicobacter pylori outer inflammatory protein DNA vaccineloaded bacterial ghost enhances immune protective efficacy in C57BL/6 mice, Vaccine, 2014, vol. 32, no. 46, pp. 6054–6060.CrossRefGoogle Scholar
  22. 22.
    Sambrook, J. and Russell, D.W., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2001, pp. 148–190.Google Scholar
  23. 23.
    Salama, N.R., Hartung, M.L., and Müller, A., Life in the human stomach: Persistence strategies of the bacterial pathogen Helicobacter pylori, Nat. Rev. Microbiol., 2013, vol. 11, no. 6, pp. 385–399.CrossRefGoogle Scholar
  24. 24.
    Emara, M.H., Elhawari, S.A., Yousef, S., Radwan, M.I., and Abdel-Aziz, H.R., Emerging role of probiotics in the management of Helicobacter pylori infection: Histopathologic perspectives, Helicobacter, 2016, vol. 21, no. 1, pp. 3–10.CrossRefGoogle Scholar
  25. 25.
    Coelho, L.G. and Coelho, M., Clinical management of Helicobacter pylori: the Latin American perspective, Dig. Dis., 2014, vol. 32, no. 3, pp. 302–309.CrossRefGoogle Scholar
  26. 26.
    Patel, S.K., Pratap, C.B., Jain, A.K., Gulati, A.K., and Nath, G., Diagnosis of Helicobacter pylori: What should be the gold standard?, World J. Gastroenterol., 2014, vol. 20, no. 36, pp. 12 847–12 859.CrossRefGoogle Scholar
  27. 27.
    Ferro, A., Peleteiro, B., Malvezzi, M., Bosetti, C., Bertuccio, P., Levi, F., et al., Worldwide trends in gastric cancer mortality (1980–2011), with predictions to 2015, and incidence by subtype, Eur. J. Cancer, 2014, vol. 50, no. 7, pp. 1330–1344.CrossRefGoogle Scholar
  28. 28.
    Safarpour, M., Kazemi, Z., Doosti, E., and Doosti, A., Cloning tagD gene from Helicobacter pylori in PFLAG-CMV-3 eukaryotic vector to generate a DNA vaccine, Pars J. Med. Sci., 2016, vol. 14, no. 4, pp. 43–50.Google Scholar
  29. 29.
    Chionh, Y.T., Arulmuruganar, A., Venditti, E., Ng, G.Z., Han, J.X., Entwisle, C., et al., Heat shock protein complex vaccination induces protection against Helicobacter pylori without exogenous adjuvant, Vaccine, 2014, vol. 32, no. 20, pp. 2350–2358.CrossRefGoogle Scholar
  30. 30.
    Miyashita, M., Joh, T., Watanabe, K., Todoroki, I., Seno, K., Ohara, H., et al., Immune responses in mice to intranasal and intracutaneous administration of a DNA vaccine encoding Helicobacter pylori-catalase, Vaccine, 2002, vol. 20, no. 17, pp. 2336–2342.CrossRefGoogle Scholar
  31. 31.
    Onate, A.A., Céspedes, S., Cabrera, A., Rivers, R., González, A., Muñoz, C., et al., A DNA vaccine encoding Cu, Zn superoxide dismutase of Brucella abortus induces protective immunity in BALB/c mice, Infect. Immun., 2003, vol. 71, no. 9, pp. 4857–4861.CrossRefGoogle Scholar
  32. 32.
    Bai, Y., Zhang, Y.L., Chen, Y., Jin, J.F., Zhang, Z.S., and Zhou, D.Y., Cloning and expression and immunogenicity of Helicobacter pylori BabA2 gene, World J. Gastroenterol., 2004, vol. 10, no. 17, p. 2560.CrossRefGoogle Scholar
  33. 33.
    Cassataro, J., Velikovsky, C.A., de la Barrera, S., Estein, S.M., Bruno, L., and Bowden, R., A DNA vaccine coding for the Brucella outer membrane protein 31 confers protection against B. melitensis and B. ovis infection by eliciting a specific cytotoxic response, Infect. Immun., 2005, vol. 73, no. 10, pp. 6537–6546.CrossRefGoogle Scholar
  34. 34.
    Doosti, A., Ghasemi-Dehkordi, P., Javadi, G.R., Sardari, S., and Shokrgozar, M.A., DNA vaccine encoding the Omp31 gene of Brucella melitensis induces protective immunity in BALB/c mice, Res. J. Biol. Sci., 2009, vol. 4, no. 1, pp. 126–131.Google Scholar
  35. 35.
    Jie, L., Wen, Y., Sheng, L., Yan, Z., Cui Ming, Z., and Yi-mou, W.U., Immunocompetence of Helicobacter pylori ureI DNA vaccine in mice, Chin. J. Zoonoses, 2013, vol. 29, no. 9, pp. 895–898.Google Scholar
  36. 36.
    Al-Mariri, A., Akel, R., and Abbady, A., A DNA vaccine encoding p39 and sp41 of Brucella melitensis induces protective immunity in BALB/c mice, Arch. Med. Vet., 2014, vol. 46, no. 1, pp. 53–62.CrossRefGoogle Scholar
  37. 37.
    Mahmoudi Vashian, Z. and Doosti, A., Cloning and gene expression of ureG gene as a DNA vaccine candidate against Helicobacter pylori, J. Guilan Univ. Med. Sci., 2017, vol. 26, no. 102, pp. 20–29.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad UniversityShahrekordIran
  2. 2.Biotechnology Research Center, Shahrekord Branch, Islamic Azad UniversityShahrekordIran
  3. 3.Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical SciencesShahrekordIran

Personalised recommendations