Polymorphism of the Two Genes Encoding Catecholamine Degradation Enzymes (COMT and MAOA) in the Hadza and Datoga African Ethnic Populations

  • D. I. FekhretdinovaEmail author
  • E. M. Sukhodolskaya
  • D. V. Shibalev
  • O. E. Lazebnyy
  • M. L. Butovskaya
  • A. P. Ryskov
  • V. A. Vasil’yev


This paper reports a molecular genetics analysis of the loci of two genes in the catecholamine degradation system (COMT rs4680 and MAOA-uVNTR) in samples from the Hadza (n = 353) and Datoga (n = 465) African ethnic populations. The results of pairwise comparisons of the COMT rs4680 locus allele and genotype frequency distribution revealed a statistically significant difference between men from the Hadza and Datoga populations (p < 0.001), while the differences observed between women from these two tribes remained below the significance threshold (p = 0.064; p = 0.076). In the Hadza population, we have also observed a statistically significant increase in the portion of G/A heterozygotes and a decrease in the portion of A/A homozygotes among women (0.576 and 0.127, respectively) compared with men (0.482 and 0.231, respectively). In the case of the MAOA-uVNTR locus, no statistical differences in the allele frequency distribution were found between the men from the two populations (p = 0.993). Women also showed no statistical differences in either allele (p = 0.229) or genotype (p = 0.057) frequencies. Moreover, in each tribe, we observed no differences in allele frequencies in the MAOA-uVNTR locus between the men and women of the same tribe. The obtained data may be further used to detect connections between gene variants and different forms of aggressive behavior in human beings.


catecholamine degradation genes population genetic parameters aggressive behavior traditional societies Hadza Datoga 



  1. 1.
    Ravich-Shcherbo, I.V., Maryutina, T.M., and Grigorenko, E.L., Psikhogenetika (Psychogenetics), Moscow: Aspekt Press, 2000.Google Scholar
  2. 2.
    Plomin, R., Owen, M.J., and McGuffin, P., The genetic basis of complex human behaviors, Science, 1994, vol. 264, no. 5166, pp. 1733–1739.CrossRefPubMedGoogle Scholar
  3. 3.
    Takahashi, A., Quadros, I.M., de Almeida, R.M., and Miczek, K.A., Brain serotonin receptors and transporters: initiation vs. termination of escalated aggression, Psychopharmacology, 2011, vol. 213, nos. 2–3, pp. 183–212.CrossRefPubMedGoogle Scholar
  4. 4.
    Bortolato, M., Pivac, N., Seler, D.M., et al., The role of the serotonergic system at the interface of aggression and suicide, Neuroscience, 2013, vol. 236, pp. 160–185.CrossRefPubMedGoogle Scholar
  5. 5.
    Banlaki, Z., Elek, Z., Nanasi, T., et al., Polymorphism in the serotonin receptor 2a (HTR2A) gene as possible predisposal factor for aggressive traits, PLoS One, 2015, vol. 10, no. 2, p. e0117792.CrossRefPubMedGoogle Scholar
  6. 6.
    Volavka, J.A., Bilder, R., and Nolan, K., Catecholamines and aggression: The role of COMT and MAO polymorphisms, Ann. N. Y. Acad. Sci., 2004, vol. 1036, no. 1, pp. 393–398.CrossRefPubMedGoogle Scholar
  7. 7.
    Hirata, Y., Zai, C.C., Nowrouzi, B., et al., Study of the Catechol-O-Methyltransferase (COMT) gene with high aggression in children, Aggressive Behav., 2013, vol. 39, no. 1, pp. 45–51.CrossRefGoogle Scholar
  8. 8.
    Grossman, M.H., Emanuel, B.S., and Budarf, M.L., Chromosomal mapping of the human catechol-O-methyltransferase gene to 22q11.1→q11.2, Genomics, 1992, vol. 12, no. 4, pp. 822–825.CrossRefPubMedGoogle Scholar
  9. 9.
    Lachman, H.M., Papolos, D.F., Saito, T., et al., Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders, Pharmacogenet. Genomics, 1996, vol. 6, no. 3, pp. 243–250.CrossRefGoogle Scholar
  10. 10.
    Perroud, N., Jaussent, I., Guillaume, S., et al., COMT but not serotonin-related genes modulates the influence of childhood abuse on anger traits, Genes, Brain Behav., 2010, vol. 9, no. 2, pp. 193–202.CrossRefGoogle Scholar
  11. 11.
    Tosato, S., Bonetto, C., Di Forti, M., et al., Effect of COMT genotype on aggressive behavior in a community cohort of schizophrenic patients, Neurosci. Lett., 2011, vol. 495, no. 1, pp. 17–21.CrossRefPubMedGoogle Scholar
  12. 12.
    Kochersperger, L.M., Parker, E.L., Siciliano, M., et al., Assignment of genes for human monoamine oxidases A and B to the X chromosome, J. Neurosci. Res., 1986, vol. 16, no. 4, pp. 601–616.CrossRefPubMedGoogle Scholar
  13. 13.
    Sabol, S.Z., Hu, S., and Hamer, D., A functional polymorphism in the monoamine oxidase A gene promoter, Hum. Genet., 1998, vol. 103, no. 3, pp. 273–279.CrossRefPubMedGoogle Scholar
  14. 14.
    Huang, Y.Y., Cate, S.P., Battistuzzi, C., et al., An association between a functional polymorphism in the monoamine oxidase a gene promoter, impulsive traits and early abuse experiences, Neuropsychopharmacology, 2004, vol. 29, no. 8, pp. 1498–1505.CrossRefPubMedGoogle Scholar
  15. 15.
    Deckert, J., Catalano, M., Syagailo, Y.V., et al., Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder, Hum. Mol. Genet., 1999, vol. 8, no. 4, pp. 621–624.CrossRefPubMedGoogle Scholar
  16. 16.
    Denney, R.M., Koch, H., and Craig, I.W., Association between monoamine oxidase A activity in human male skin fibroblasts and genotype of the MAOA promoter-associated variable number tandem repeat, Hum. Genet., 1999, vol. 105, no. 6, pp. 542–551.PubMedGoogle Scholar
  17. 17.
    Verhoeven, F.E., Booij, L., Kruijt, A.W., et al., The effects of MAOA genotype, childhood trauma, and sex on trait and state-dependent aggression, Brain Behav., 2012, vol. 2, no. 6, pp. 806–813.CrossRefPubMedGoogle Scholar
  18. 18.
    Holz, N., Boecker, R., Buchmann, A.F., et al., Evidence for a sex-dependent MAOA × childhood stress interaction in the neural circuitry of aggression, Cereb. Cortex, 2014, vol. 26, no. 3, pp. 904–914.CrossRefPubMedGoogle Scholar
  19. 19.
    Kuepper, Y., Grant, P., Wielpuetz, C., and Hennig, J., MAOA-uVNTR genotype predicts interindividual differences in experimental aggressiveness as a function of the degree of provocation, Behav. Brain Res., 2013, vol. 247, pp. 73–78.CrossRefPubMedGoogle Scholar
  20. 20.
    Kolla, N.J., Attard, S., Craig, G., et al., Monoamine oxidase A alleles in violent offenders with antisocial personality disorder: high activity associated with proactive aggression, Crim. Behav. Ment. Health: CBMH, 2014, vol. 24, no. 5, p. 368.CrossRefPubMedGoogle Scholar
  21. 21.
    Butovskaya, M.L., Burkova, V.N., and Mabulla, A., Manipulations of the corpus in the context of life cycle rites among the Datoga cattle breeders of Northern Tanzania, Soc. Evol. Hist., 2015, vol. 14, no. 1, pp. 87–104.Google Scholar
  22. 22.
    Lachance, J., Vernot, B., Elbers, C.C., et al., Evolutionary history and adaptation from high-coverage whole-genome sequences of diverse African hunter-gatherers, Cell, 2012, vol. 150, no. 3, pp. 457–469.CrossRefPubMedGoogle Scholar
  23. 23.
    Jones, G., Zammit, S., Norton, N., et al., Aggressive behaviour in patients with schizophrenia is associated with catechol-O-methyltransferase genotype, Br. J. Psychiatry, 2001, vol. 179, no. 4, pp. 351–355.CrossRefPubMedGoogle Scholar
  24. 24.
    Gaisina, D.A., Khalilova, Z.L., and Khusnutdinova, E.K., Genetic factors of risk of suicidal behavior, Zh. Nevrol. Psikhiatr. im. S.S. Korsakova, 2008, vol. 108, no. 1, pp. 87–91.PubMedGoogle Scholar
  25. 25.
    Harrison, P.J. and Tunbridge, E.M., Catechol-O-methyltransferase (COMT): A gene contributing to sex differences in brain function, and to sexual dimorphism in the predisposition to psychiatric disorders, Neuropsychopharmacology, 2008, vol. 33, no. 13, pp. 3037–3045.CrossRefPubMedGoogle Scholar
  26. 26.
    Chen, J., Lipska, B.K., Halim, N., et al., Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): Effects on mRNA, protein, and enzyme activity in postmortem human brain, Am. J. Hum. Genet., 2004, vol. 75, no. 5, pp. 807–821.CrossRefPubMedGoogle Scholar
  27. 27.
    Enoch, M.A., Xu, K., Ferro, E., et al., Genetic origins of anxiety in women: a role for a functional catechol-O-methyltransferase polymorphism, Psychiatr. Genet. (London, U. K.), 2003, vol. 13, no. 1, pp. 33–41.CrossRefGoogle Scholar
  28. 28.
    Stein, M.B., Fallin, M.D., Schork, N.J., and Gelernter, J., COMT polymorphisms and anxiety-related personality traits, Neuropsychopharmacology, 2005, vol. 30, no. 11, pp. 2092–2102.CrossRefPubMedGoogle Scholar
  29. 29.
    Caspi, A., McClay, J., Moffitt, T.E., et al., Role of genotype in the cycle of violence in maltreated children, Science, 2002, vol. 297, no. 5582, pp. 851–854.CrossRefPubMedGoogle Scholar
  30. 30.
    Edwards, A.C., Dodge, K.A., Latendresse, S.J., et al., MAOA-uVNTR and early physical discipline interact to influence delinquent behavior, J. Child Psychol. Psychiatry, 2010, vol. 51, no. 6, pp. 679–687.CrossRefPubMedGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • D. I. Fekhretdinova
    • 1
    Email author
  • E. M. Sukhodolskaya
    • 1
  • D. V. Shibalev
    • 1
  • O. E. Lazebnyy
    • 2
  • M. L. Butovskaya
    • 3
    • 4
  • A. P. Ryskov
    • 1
  • V. A. Vasil’yev
    • 1
  1. 1.Institute of Gene Biology, Russian Academy of SciencesMoscowRussia
  2. 2.Koltsov Institute of Developmental Biology, Russian Academy of SciencesMoscowRussia
  3. 3.Miklukho-Maklai Institute of Ethnology and Anthropology, Russian Academy of SciencesMoscowRussia
  4. 4.Russian State Humanities UniversityMoscowRussia

Personalised recommendations