Species Diversity of Lactobacilli of Vaginal Microbiome: How to Observe It

  • V. V. DemkinEmail author


In this review, an attempt to trace the evolution of knowledge about the species diversity of lactobacilli in the historical perspective, from the moment of their discovery to the present, was made, taking into account the technical characteristics of experiments that can influence the final results of the research. Comparison of the data obtained using various methods of identification of lactobacilli was performed: after isolation based on preliminary cultivation using phenotypic and genotypic methods and based on direct identification of species by high-throughput sequencing and PCR methods.


vaginal microbiota lactobacilli biodiversity methods of identification review 



  1. 1.
    Pot, B., Felis, G.E., Bruyne, K.D., et al., The genus Lactobacillus, in Lactic Acid Bacteria, John Wiley and Sons, 2014, pp. 249–353.Google Scholar
  2. 2.
    Collins, M.D., Rodrigues, U.M., Ash, C., et al., Phylogenetic analysis of the genus Lactobacillus and related lactic acid bacteria as determined by reverse transcriptase sequencing of 16S rRNA, FEMS Microbiol. Lett., 1991, vol. 77, pp. 5–12.CrossRefGoogle Scholar
  3. 3.
    Schleifer, K.-H. and Ludwig, W., Phylogeny of the genus Lactobacillus and related genera, Syst. Appl. Microbiol., 1995, vol. 18, pp. 461–467.CrossRefGoogle Scholar
  4. 4.
    Hammes, W.P. and Hertel, C., The genera Lactobacillus and Carnobacterium, in The Prokaryotes Release, Dworkin, M., Ed., Springer, 2003, vol. 3, p. 15.Google Scholar
  5. 5.
    Felis, G.E. and Dellaglio, F., Taxonomy of lactobacilli and bifidobacteria, Curr. Issues Intest. Microbiol., 2007, vol. 8, no. 2, pp. 44–61.PubMedGoogle Scholar
  6. 6.
    Döderlein, A., Das Scheidensekret und seine Bedeutung für das Puerperalfieber, Zentralbl. Bakteriol., Mikrobiol. Hyg., 1892, vol. 11, p. 699.Google Scholar
  7. 7.
    Thomas, S., Döderlein’s bacillus: Lactobacillus acidophilus, J. Infect. Dis., 1928, vol. 43, pp. 218–227.CrossRefGoogle Scholar
  8. 8.
    Rogosa, M. and Sharpe, M.E., Species differentiation of human vaginal lactobacilli, J. Gen. Microbiol., 1960, vol. 23, pp. 197–201.CrossRefPubMedGoogle Scholar
  9. 9.
    Reid, G., McGroarty, J.A., Tomeczek, L., and Bruce, A.W., Identification and plasmid profiles of Lactobacillus species from the vagina 100 healthy women, FEMS Immunol. Med. Microbiol., 1996, vol. 15, no. 1, pp. 23–26.CrossRefPubMedGoogle Scholar
  10. 10.
    Pérez-Miravete, A., Estudios sobre la flora vaginal. IX. Clasificación de Lactobacilli de origen vaginal, Rev. Latinoam. Microbiol. Parasitol., 1967, vol. 9, pp. 11–14.Google Scholar
  11. 11.
    Wylie, J.G. and Henderson, A., Identity and glycogen-fermenting ability of lactobacilli isolated from the vagina of pregnant women, J. Med. Microbiol., 1969, vol. 2, no. 3, pp. 363–366.CrossRefPubMedGoogle Scholar
  12. 12.
    Bartlett, J.G., Onderdonk, A.B., Drude, E., et al., Quantitative bacteriology of the vaginal flora, J. Infect. Dis., 1977, vol. 136, no. 2, pp. 271–277.CrossRefPubMedGoogle Scholar
  13. 13.
    Eschenbach, D.A., Davick, P.R., Williams, B.L., et al., Prevalence of hydrogen peroxide-producing Lactobacillus species in normal women and women with bacterial vaginosis, J. Clin. Microbiol., 1989, vol. 27, no. 2, pp. 251–256.PubMedGoogle Scholar
  14. 14.
    Redondo-Lopez, V., Cook, R.L., and Sobel, J.D., Emerging role of lactobacilli in the control and maintenance of the vaginal bacterial microflora, Rev. Infect. Dis., 1990, vol. 12, no. 5, pp. 856–872.CrossRefPubMedGoogle Scholar
  15. 15.
    McGroarty, J.A., Tomeczek, L., Pond, D.G., et al., Hydrogen peroxide production by Lactobacillus species: Correlation with susceptibility to the spermicidal compound Nonoxynol-9, J. Infect. Dis., 1992, vol. 165, pp. 1142–1144.CrossRefPubMedGoogle Scholar
  16. 16.
    Falsen, E., Pascual, C., Sjoden, B., et al., Phenotypic and phylogenetic characterization of a novel Lactobacillus species from human sources: description of Lactobacillus iners sp. nov., Int. J. Syst. Bacteriol., 1999, vol. 49, no. 1, pp. 217–221.CrossRefPubMedGoogle Scholar
  17. 17.
    Lauer, E., Helming, C., and Kandler, O., Heterogeneity of the species Lactobacillus acidophilus (Moro) Hansen and Mocquot as revealed by biochemical characteristics and DNA-DNA hybridization, Zentralbl. Bakteriol., Mikrobiol. Hyg., Abt. 1, Orig. C, 1980, vol. 1, pp. 150–168.Google Scholar
  18. 18.
    Cato, E.P., Moore, W.E.C., and Johnson, J.L., Synonymy of strains of “Lactobacillus acidophilus” group A2 (Johnson et al. 1980) with the type strain of Lactobacillus crispatus (Brygoo and Aladame 1953) Moore and Holdeman 1970, Int. J. Syst. Evol. Microbiol., 1983, vol. 33, no. 2, pp. 426–428.Google Scholar
  19. 19.
    Fujisawa, T., Benno, Y., Yaeshima, T., and Mitsuoka, T., Taxonomic study of the Lactobacillus acidophilus group, with recognition of Lactobacillus gallinarum sp. nov. and Lactobacillus johnsonii sp. nov. and synonymy of Lactobacillus acidophilus group A3 (Johnson et al. 1980) with the type strain of Lactobacillus amylovorus (Nakamura 1981), Int. J. Syst. Bacteriol., 1992, vol. 42, no. 3, pp. 487–491.CrossRefPubMedGoogle Scholar
  20. 20.
    Weiss, N., Schillinger, U., and Kandler, O., Lactobacillus lactis, Lactobacillus leichmannii and Lactobacillus bulgaricus, subjective synonyms of Lactobacillus delbrueckii, and description of Lactobacillus delbrueckii subsp. lactis comb. nov. and Lactobacillus delbrueckii subsp. bulgaricus comb. nov., Syst. Appl. Microbiol., 1983, vol. 4, no. 4, pp. 552–557.CrossRefPubMedGoogle Scholar
  21. 21.
    Collins, M.D., Phillips, B.A., and Zanoni, P., Deoxyribonucleic acid homology studies of Lactobacillus casei, Lactobacillus paracasei sp. nov., subsp. paracasei and subsp. tolerans, and Lactobacillus rhamnosus sp. nov., comb. nov., Int. J. Syst. Evol. Microbiol., 1989, vol. 39, pp. 105–108.Google Scholar
  22. 22.
    Collins, M.D. and Wallbanks, S., Comparative sequence analyses of the 16S rRNA genes of Lactobacillus minutus, Lactobacillus rimae and Streptococcus parvulus: proposal for the creation of a new genus Atopobium, FEMS Microbiol. Lett., 1992, vol. 72, nos. 2–3, pp. 235–240.Google Scholar
  23. 23.
    Embley, T.M., Faquir, N., Bossart, W., and Collins, M.D., Lactobacillus vaginalis sp. nov. from the human vagina, Int. J. Syst. Evol. Microbiol., 1989, vol. 39, pp. 368–370.Google Scholar
  24. 24.
    Angeles-Lopez, M., Garcia-Cano, R.E., and Aquino, S.C., Hydrogen peroxide production and resistance to nonoxinol-9 in Lactobacillus spp. isolated from the vagina of reproductive-age women, Rev. Latinoam. Microbiol., 2001, vol. 43, no. 4, pp. 171–176.PubMedGoogle Scholar
  25. 25.
    Pascual, L.M., Daniele, M.B., Pajaro, C., and Barberis, L., Lactobacillus species isolated from the vagina: identification, hydrogen peroxide production and nonoxynol-9, Contraception, 2006, vol. 73, no. 1, pp. 78–81.CrossRefPubMedGoogle Scholar
  26. 26.
    Croxatto, A., Prod’hom, G., and Greub, G., Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology, FEMS Microbiol. Rev., 2012, vol. 36, no. 2, pp. 380–407.CrossRefPubMedGoogle Scholar
  27. 27.
    Anderson, A.C., Sanunu, M., Schneider, C., et al., Rapid species-level identification of vaginal and oral lactobacilli using MALDI-TOF MS analysis and 16S rDNA sequencing, BMC Microbiol., 2014, vol. 14, p. 12.CrossRefGoogle Scholar
  28. 28.
    Isaeva, A.S., Letarov, A.V., Il’ina E.N., et al., Species identification of vaginal lactobacilli isolated from reproductive-age women, Akush. Ginekol., 2012, vol. 3, pp. 60–64.Google Scholar
  29. 29.
    Melkumyan, A.R., Priputnevich, T.V., Ankirskaya, A.S., et al., Species composition of lactobacilli under different conditions of vaginal microbiota in pregnant women, Klin. Mikrobiol. Antimikrobn. Khimioter., 2013, vol. 15, no. 1, pp. 72–79.Google Scholar
  30. 30.
    Priputnevich, T.V., Melkumyan, A.R., Ankirskaya, A.S., et al., Usage of modern laboratory technologies for lactobacilli species identifying for estimating the state of vaginal microbiota in reproductive-age women, Akush. Ginekol., 2013, vol. 1, pp. 76–80.Google Scholar
  31. 31.
    Foschi, C., Laghi, L., Parolin, C., et al., Novel approaches for the taxonomic and metabolic characterization of lactobacilli: Integration of 16S rRNA gene sequencing with MALDI-TOF MS and 1H-NMR, PLoS One, 2017, vol. 12, no. 2, p. e0172483.CrossRefPubMedGoogle Scholar
  32. 32.
    Woese, C.R. and Fox, G.E., Phylogenetic structure of the prokaryotic domain: the primary kingdoms, Proc. Natl. Acad. Sci. U. S. A., 1977, vol. 74, no. 11, pp. 5088–5090.CrossRefPubMedGoogle Scholar
  33. 33.
    Mohania, D., Nagpal, R., Kumar, M., et al., Molecular approaches for identification and characterization of lactic acid bacteria, J. Dig. Dis., 2008, vol. 9, no. 4, pp. 190–198.CrossRefPubMedGoogle Scholar
  34. 34.
    Song, Y.-L., Kato, N., Matsumiya, Y., et al., Identification of and hydrogen peroxide production by fecal and vaginal lactobacilli isolated from Japanese women and newborn infants, J. Clin. Microbiol., 1999, vol. 37, no. 9, pp. 3062–3064.PubMedGoogle Scholar
  35. 35.
    Antonio, M.A., Hawes, S.E., and Hillier, S.L., The identification of vaginal Lactobacillus species and the demographic and microbiologic characteristics of women colonized by these species, J. Infect. Dis., 1999, vol. 180, no. 6, pp. 1950–1956.CrossRefPubMedGoogle Scholar
  36. 36.
    Sanger, F., Nicklen, S., and Coulson, A.R., DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. U. S. A., 1977, vol. 74, no. 12, pp. 5463–5467.CrossRefPubMedGoogle Scholar
  37. 37.
    Vasquez, A., Jakobsson, T., Ahrne, S., et al., Vaginal lactobacillus flora of healthy Swedish women, J. Clin. Microbiol., 2002, vol. 40, no. 8, pp. 2746–2749.CrossRefPubMedGoogle Scholar
  38. 38.
    Pavlova, S.I., Kilic, A.O., Kilic, S.S., et al., Genetic diversity of vaginal lactobacilli from women in different countries based 16S rRNA gene sequences, J. Appl. Microbiol., 2002, vol. 92, no. 3, pp. 451–459.CrossRefPubMedGoogle Scholar
  39. 39.
    Verhelst, R., Verstraelen, H., Claeys, G., et al., Cloning of 16S rRNA genes amplified from normal and disturbed vaginal microflora suggests a strong association between Atopobium vaginae, Gardnerella vaginalis and bacterial vaginosis, BMC Microbiol., 2004, vol. 4, p. 16.CrossRefPubMedGoogle Scholar
  40. 40.
    Hyman, R.W., Fukushima, M., Diamond, L., et al., Microbes on the human vaginal epithelium, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, no. 22, pp. 7952–7957.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhou, X., Brown, C., Abdo, Z., et al., Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women, ISME J., 2007, vol. 1, no. 2, pp. 121–133.CrossRefPubMedGoogle Scholar
  42. 42.
    Yoshimura, K., Morotomi, N., Fukuda, K., et al., Intravaginal microbial flora by the 16S rRNA gene sequencing, Am. J. Obstet. Gynecol., 2011, vol. 205, no. 3, pp. 235.e231–235.e239.CrossRefGoogle Scholar
  43. 43.
    Pendharkar, S., Magopane, T., Larsson, P.G., et al., Identification and characterization of vaginal lactobacilli from South African women, BMC Infect. Dis., 2013, vol. 13, p. 43.CrossRefPubMedGoogle Scholar
  44. 44.
    Martinez-Pena, M.D., Castro-Escarpulli, G., and Aguilera-Arreola, M.G., Lactobacillus species isolated from vaginal secretions of healthy and bacterial vaginosis-intermediate Mexican women: a prospective study, BMC Infect. Dis., 2013, vol. 13, p. 189.CrossRefPubMedGoogle Scholar
  45. 45.
    Mousavi, E., Makvandi, M., Teimoori, A., et al., In vitro adherence of Lactobacillus strains isolated from the vaginas of healthy Iranian women, J. Chin. Med. Assoc., 2016, vol. 79, no. 12, pp. 665–671.CrossRefPubMedGoogle Scholar
  46. 46.
    Mardis, E.R., DNA sequencing technologies: 2006–2016, Nat. Protoc., 2017, vol. 12, no. 2, pp. 213–218.CrossRefPubMedGoogle Scholar
  47. 47.
    Goodwin, S., McPherson, J.D., and McCombie, W.R., Coming of age: Ten years of next-generation sequencing technologies, Nat. Rev. Genet., 2016, vol. 17, no. 6, pp. 333–351.CrossRefPubMedGoogle Scholar
  48. 48.
    Smith, B.C., McAndrew, T., Chen, Z., et al., The cervical microbiome over 7 years and a comparison of methodologies for its characterization, PLoS One, 2012, vol. 7, no. 7, p. 40425.CrossRefGoogle Scholar
  49. 49.
    Ravel, J., Gajer, P., Abdo, Z., et al., Vaginal microbiome of reproductive-age women, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 1, Suppl., pp. 4680–4687.CrossRefPubMedGoogle Scholar
  50. 50.
    Srinivasan, S., Hoffman, N.G., Morgan, M.T., et al., Bacterial communities in women with bacterial vaginosis: High resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria, PLoS One, 2012, vol. 7, no. 6, p. 37818.CrossRefGoogle Scholar
  51. 51.
    Drell, T., Lillsaar, T., Tummeleht, L., et al., Characterization of the vaginal micro- and mycobiome in asymptomatic reproductive-age Estonian women, PLoS One, 2013, vol. 8, no. 1, p. 54379.CrossRefGoogle Scholar
  52. 52.
    Shipitsyna, E., Roos, A., Datcu, R., et al., Composition of the vaginal microbiota in women of reproductive age—sensitive and specific molecular diagnosis of bacterial vaginosis is possible?, PLoS One, 2013, vol. 8, no. 4, p. 60670.CrossRefGoogle Scholar
  53. 53.
    Oh, H.Y., Seo, S.S., Kong, J.S., et al., Association between obesity and cervical microflora dominated by Lactobacillus iners in Korean women, J. Clin. Microbiol., 2015, vol. 53, no. 10, pp. 3304–3309.CrossRefPubMedGoogle Scholar
  54. 54.
    Romero, R., Hassan, S.S., Gajer, P., et al., The composition and stability of the vaginal microbiota of normal pregnant women is different from that of nonpregnant women, Microbiome, 2014, vol. 2, no. 1, p. 4.CrossRefPubMedGoogle Scholar
  55. 55.
    Romero, R., Hassan, S.S., Gajer, P., et al., The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term, Microbiome, 2014, vol. 2, p. 18.CrossRefPubMedGoogle Scholar
  56. 56.
    Lee, J.E., Lee, S., Lee, H., et al., Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort, PLoS One, 2013, vol. 8, no. 5, p. 63514.CrossRefGoogle Scholar
  57. 57.
    Aagaard, K., Riehle, K., Ma, J., et al., A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy, PLoS One, 2012, vol. 7, no. 6, p. 36466.CrossRefGoogle Scholar
  58. 58.
    DiGiulio, D.B., Callahan, B.J., McMurdie, P.J., et al., Temporal and spatial variation of the human microbiota during pregnancy, Proc. Natl. Acad. Sci. U. S. A., 2015, vol. 112, no. 35, pp. 11060–11065.CrossRefPubMedGoogle Scholar
  59. 59.
    Lennard, K., Dabee, S., Barnabas, S.L., et al., Microbial composition predicts genital tract inflammation and persistent bacterial vaginosis in South African adolescent females, Infect. Immun., 2018, vol. 86, no. 1, p. e00410-17.PubMedGoogle Scholar
  60. 60.
    Martin, D.H., Zozaya, M., Lillis, R., et al., The microbiota of the human genitourinary tract: trying to see the forest through the trees, Trans. Am. Clin. Climatol. Assoc., 2012, vol. 123, pp. 242–256.PubMedGoogle Scholar
  61. 61.
    Huang, Y.E., Wang, Y., He, Y., et al., Homogeneity of the vaginal microbiome at the cervix, posterior fornix, and vaginal canal in pregnant Chinese women, Microb. Ecol., 2015, vol. 69, no. 2, pp. 407–414.CrossRefPubMedGoogle Scholar
  62. 62.
    Hummelen, R., Fernandes, A.D., Macklaim, J.M., et al., Deep sequencing of the vaginal microbiota of women with HIV, PLoS One, 2010, vol. 5, no. 8, p. 12078.CrossRefGoogle Scholar
  63. 63.
    Tamrakar, R., Yamada, T., Furuta, I., et al., Association between Lactobacillus species and bacterial vaginosis-related bacteria, and bacterial vaginosis scores in pregnant Japanese women, BMC Infect. Dis., 2007, vol. 7, p. 128.CrossRefPubMedGoogle Scholar
  64. 64.
    Zozaya-Hinchliffe, M., Lillis, R., Martin, D.H., and Ferris, M.J., Quantitative PCR assessments of bacterial species in women with and without bacterial vaginosis, J. Clin. Microbiol., 2010, vol. 48, no. 5, pp. 1812–1819.CrossRefPubMedGoogle Scholar
  65. 65.
    Jespers, V., Menten, J., Smet, H., et al., Quantification of bacterial species of the vaginal microbiome in different groups of women, using nucleic acid amplification tests, BMC Microbiol., 2012, vol. 12, p. 83.CrossRefPubMedGoogle Scholar
  66. 66.
    Demkin, V.V. and Koshechkin, S.I., Characterization of vaginal Lactobacillus species by rplK-based multiplex qPCR in Russian women, Anaerobe, 2017, vol. 47, pp. 1–7.CrossRefPubMedGoogle Scholar
  67. 67.
    Jespers, V., van de Wijgert, J., Cools, P., et al., The significance of Lactobacillus crispatus and L. vaginalis for vaginal health and the negative effect of recent sex: A cross-sectional descriptive study across groups of African women, BMC Infect. Dis., 2015, vol. 15, p. 115.CrossRefPubMedGoogle Scholar
  68. 68.
    Ehrstrom, S., Daroczy, K., Rylander, E., et al., Lactic acid bacteria colonization and clinical outcome after probiotic supplementation in conventionally treated bacterial vaginosis and vulvovaginal candidiasis, Microbes Infect., 2010, vol. 12, no. 10, pp. 691–699.CrossRefPubMedGoogle Scholar
  69. 69.
    Zhang, R., Daroczy, K., Xiao, B., et al., Qualitative and semiquantitative analysis of Lactobacillus species in the vaginas of healthy fertile and postmenopausal Chinese women, J. Med. Microbiol., 2012, vol. 61, part 5, pp. 729–739.CrossRefPubMedGoogle Scholar
  70. 70.
    Mitchell, C.M., Haick, A., Nkwopara, E., et al., Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women, Am. J. Obstet. Gynecol., 2015, vol. 212, no. 5, pp. 611.e1–611.e9.CrossRefGoogle Scholar
  71. 71.
    Leizer, J., Nasioudis, D., Forney, L.J., et al., Properties of epithelial cells and vaginal secretions in pregnant women when Lactobacillus crispatus or Lactobacillus iners dominate the vaginal microbiome, Reprod. Sci., 2018, vol. 25, no. 6, pp. 854–860.CrossRefPubMedGoogle Scholar
  72. 72.
    Huang, B., Fettweis, J.M., Brooks, J.P., et al., The changing landscape of the vaginal microbiome, Clin. Lab. Med., 2014, vol. 34, no. 4, pp. 747–761.CrossRefPubMedGoogle Scholar
  73. 73.
    Younes, J.A., Lievens, E., Hummelen, R., et al., Women and their microbes: The unexpected friendship, Trends Microbiol., 2018, vol. 26, no. 1, pp. 16–32.CrossRefPubMedGoogle Scholar
  74. 74.
    Garg, K.B., Ganguli, I., Das, R., and Talwar, G.P., Spectrum of Lactobacillus species present in healthy vagina of Indian women, Indian J. Med. Res., 2009, vol. 129, no. 6, pp. 652–657.PubMedGoogle Scholar
  75. 75.
    Hernandez-Rodriguez, C., Romero-Gonzalez, R., Albani-Campanario, M., et al., Vaginal microbiota of healthy pregnant Mexican women is constituted by four Lactobacillus species and several vaginosis-associated bacteria, Infect. Dis. Obstet. Gynecol., 2011, vol. 2011, p. 851485.CrossRefPubMedGoogle Scholar
  76. 76.
    Zhou, X., Hansmann, M.A., Davis, C.C., et al., The vaginal bacterial communities of Japanese women resemble those of women in other racial groups, FEMS Immunol. Med. Microbiol., 2010, vol. 58, no. 2, pp. 169–181.CrossRefPubMedGoogle Scholar
  77. 77.
    Gajer, P., Brotman, R.M., Bai, G., et al., Temporal dynamics of the human vaginal microbiota, Science, 2012, vol. 4, no. 132, pp. 132–152.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Molecular Genetics, Russian Academy of SciencesMoscowRussia

Personalised recommendations