Molecular Genetics, Microbiology and Virology

, Volume 29, Issue 4, pp 227–239 | Cite as

Riboswitch: Ancient living switch for gene regulation

  • S. RayEmail author
  • H. Chakdar


Since last two decades, the role of structural fluctuations of RNA molecules have emerged as one of the key aspects for gene expression in bacteria and they have been found to play very crucial roles for survival of bacteria under highly fluctuating environmental conditions. Riboswitches are one of the RNA elements located in the 5′ region of bacterial mRNA controlling the expression of a gene located downstream to it, by conformational changes of its own upon selective binding to ligands. These molecular fossils are probably the most ancient regulatory system for gene expression. Association of riboswitches with bacterial pathogenesis and other related functions has attracted their exploitation as potential drug targets. Natural as well as synthetic riboswitches hold considerable potential to be the next generation gene control systems to be used in the field of molecular biology and genetic engineering.


regulatory RNA Riboswitch metabolite binding bacteria gene expression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garst, A.D. and Batey, R.D., A switch in time: detailing the life of a riboswitch, Biochim. Biophys. Acta, 2009, vol. 1789, nos. 9–10, pp. 584–591.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Sorek, R., Kunin, V., and Hugenholtz, P., CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea, Nat. Rev. Microbiol., 2008, vol. 6, pp. 181–186.PubMedCrossRefGoogle Scholar
  3. 3.
    Waters, L.S. and Storz, G., Regulatory RNAs in bacteria, Cell, 2009, vol. 136, pp. 615–628.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Winkler, W.C. and Breaker, R.R., Genetic control by metabolite-binding riboswitches, Chem. Biochem., 2003, vol. 4, pp. 1024–1032.Google Scholar
  5. 5.
    Nudler, E. and Mironov, A.S., The riboswitch control of bacterial metabolism, Trends. Biochem. Sci., 2004, vol. 29, pp. 11–17.PubMedCrossRefGoogle Scholar
  6. 6.
    Tucker, B.J. and Breaker, R., Riboswitches as versatile gene control elements, Curr. Opin. Struct. Biol., 2005, vol. 15, pp. 342–348.PubMedCrossRefGoogle Scholar
  7. 7.
    Winkler, W.C., Riboswitches and the role of non-coding RNAs in bacterial metabolic control, Curr. Opin. Chem. Biol., 2005, vol. 9, pp. 594–602.PubMedCrossRefGoogle Scholar
  8. 8.
    Barrick, J.E. and Breaker, R., The distributions, mechanisms and structures of metabolite binding riboswitches, Genome Biol., 2007, vol. 8, pp. 11–19.CrossRefGoogle Scholar
  9. 9.
    Rodionov, D.A., Mironov, A.A., and Gelfand, M.S., Conservation of the biotin regulon and the BirA regulatory signal in eubacteria and archaea, Genome Res., 2002, vol. 12, pp. 1507–1516.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Rodionov, D.A., Vitreschak, A.G., Mironov, A.A., and Gelfand, M.S., Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes, J. Biol. Chem., 2003, vol. 278, pp. 41148–41159.PubMedCrossRefGoogle Scholar
  11. 11.
    White, H.B., Coenzymes as fossils of an earlier metabolic state, J. Mol. Evol., 1976, vol. 7, pp. 101–104.PubMedCrossRefGoogle Scholar
  12. 12.
    Yin, J.Q. and Wan, Y., RNA-mediated gene regulation system: now and the future, Int. J. Mol. Med., 2012, vol. 10, pp. 355–365.Google Scholar
  13. 13.
    Lioliou, E., Romilly, C., Romby, P., and Fechter, P., RNA-mediated regulation in bacteria: from natural to artificial systems, Biotechnol. Annu. Rev., 2010, vol. 27, pp. 222–235.Google Scholar
  14. 14.
    Hiz, M.M. and Aki, C., Gene regulation control by RNA, Ann. Biol. Res., 2012, vol. 3, pp. 5119–5126.Google Scholar
  15. 15.
    Costa, M. and Michel, F., Frequent use of the same tertiary motif by self-folding RNAs, EMBO J., 1995, vol. 14, pp. 1276–1285.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Cate, J.H., Gooding, A.R., Podell, E., Zhou, K., Golden, B.L., Kundrot, C.E., Cech, T.R., and Doudna, J.A., Crystal structure of a group I ribozyme domain: principles of RNA packing, Science, 1996, vol. 273, pp. 1678–1685.PubMedCrossRefGoogle Scholar
  17. 17.
    Williamson, J.R., Induced fit in RNA-protein recognition, Nature. Struct. Biol., 2000, vol. 7, pp. 834–837.PubMedCrossRefGoogle Scholar
  18. 18.
    Tuerk, C. and Gold, L., Systematic evolution of ligands by exponential enrichment RNA ligands to bacteriophage T4 DNA polymerase, Science, 1990, vol. 149, pp. 505–510.CrossRefGoogle Scholar
  19. 19.
    Robertson, D.L. and Joyce, G.F., Selection in vitro of an RNA enzyme that specifically cleaves single stranded DNA, Nature, 1990, vol. 344, pp. 467–468.PubMedCrossRefGoogle Scholar
  20. 20.
    Ellington, A.D. and Szostak, J.W., In vitro selection of RNA molecules that bind specific ligands, Nature, 1990, vol. 346, pp. 818–822.PubMedCrossRefGoogle Scholar
  21. 21.
    Soukup, G.A. and Breaker, R.R., Engineering precision RNA molecular switches, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, pp. 3584–3589.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Soukup, G.A. and Breaker, R.R., Allosteric nucleic acid catalysts, Curr. Opin. Struct. Biol., 2000, vol. 10, pp. 318–325.PubMedCrossRefGoogle Scholar
  23. 23.
    Lundrigan, M.D., Koster, W., and Kadner, R.J., Transcribed sequences of the Escherichia coli btuB gene control its expression and regulation by vitamin B12, Proc. Natl. Acad. Sci. U.S.A., 1991, vol. 88, pp. 1479–1483.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Nou, X. and Kadner, R.J., Adenosylcobalamin inhibits ribosome binding to btuB RNA, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, pp. 7190–7195.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Mironov, A.S., Gusarov, I., Rafikov, R., Lopez, L.E., Shatalin, K., Kreneva, R.A., Perumov, D.A., and Nudler, E., Sensing small molecules by nascent RNA: a mechanism to control transcription in Bacteria, Cell, 2002, vol. 111, pp. 747–756.PubMedCrossRefGoogle Scholar
  26. 26.
    Regulski and Breaker, R., In-line probing analysis of riboswitches, in Post-Transcriptional Gene Regulation Methods in Molecular Biology, Wilusz, J., Ed., Humana Press, 2008, vol. 419, pp. 53–67.CrossRefGoogle Scholar
  27. 27.
    Winkler, W.C. and Breaker, R., Regulation of bacterial gene expression by riboswitches, Annu. Rev. Microbiol., 2005, vol. 59, pp. 487–517.PubMedCrossRefGoogle Scholar
  28. 28.
    Breaker, R., Complex riboswitches, Science, 2008, vol. 319, pp. 1795–1797.PubMedCrossRefGoogle Scholar
  29. 29.
    Breaker, R., Riboswitches and the RNA World, Cold Spring Harb. Perspect. Biol., 2012, vol. 4, p. 003566.CrossRefGoogle Scholar
  30. 30.
    Carona, M., Basteta, L., Lussiera, A., Simoneau-Roya, M., Masséb, M., and Lafontaine, D.A., Dualacting riboswitch control of translation initiation and mRNA decay, Proc. Nat. Acad. Sci U.S.A., 2012, vol. 109, pp. 3444–3453.CrossRefGoogle Scholar
  31. 31.
    Fauzia, H., Agyeman, A., and Hinesa, J.V., T box transcription antitermination riboswitch: Influence of nucleotide sequence and orientation on tRNA binding by the antiterminator element, Biochim. Biophys. Acta, 2009, vol. 1789, pp. 185–191.CrossRefGoogle Scholar
  32. 32.
    Garst, A.D., Heroux, A., Rambo, R.P., and Batey, R.T., Crystal structure of the lysine riboswitch regulatory mRNA element, J. Biol. Chem., 2008, vol. 283, pp. 22347–22351.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Draper, D.E., Grilley, D., and Soto, A.M., Ions and RNA folding, Annu. Rev. Biophys. Biomol. Struct., 2005, vol. 34, pp. 221–243.PubMedCrossRefGoogle Scholar
  34. 34.
    Woodson, S.A., Metal ions and RNA folding: a highly charged topic with a dynamic future, Curr. Opin. Chem. Biol., 2005, vol. 9, pp. 104–109.PubMedCrossRefGoogle Scholar
  35. 35.
    Serganov, A., Huang, L., and Patel, D.J., Structural insights into amino acid binding and gene control by a lysine riboswitch, Nature, 2008, vol. 455, pp. 1263–1267.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Lang, K., Rieder, R., Micura, R., Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach, Nucleic Acids Res., 2007, vol. 35, pp. 5370–5378.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Montange, R.K. and Batey, R.T., Structure of the S-adenosylmethionine riboswitch regulatory mRNA element, Nature, 2006, vol. 441, pp. 1172–1175.PubMedCrossRefGoogle Scholar
  38. 38.
    Thore, S., Leibundgut, M., and Ban, N., Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand, Science, 2006, vol. 312, pp. 1208–1211.PubMedCrossRefGoogle Scholar
  39. 39.
    Serganov, A., Polonskaia, A., Phan, A.T., Breaker, R.R., and Patel, D.J., Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch, Nature, 2006, vol. 441, pp. 1167–1171.PubMedCrossRefGoogle Scholar
  40. 40.
    Klein, D.J., and Ferre-D’Amare, A.R., Structural Basis of glmS ribozyme activation by glucosamine-6-phosphate, Science, 2006, vol. 313, pp. 1752–1756.PubMedCrossRefGoogle Scholar
  41. 41.
    Cochrane, J.C., Lipchock, S.V., and Strobel, S.A., Structural investigation of the glmS ribozyme bound to its catalytic cofactor, Chem. Biol., 2007, vol. 14, pp. 97–105.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Batey, R.T., Gilbert, S.D., and Montange, R.K., Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine, Nature, 2004, vol. 432, pp. 411–415.PubMedCrossRefGoogle Scholar
  43. 43.
    Serganov, A., Yuan, Y.R., Pikovskaya, O., Malinina, L., Phan, A.T., Hobartner, C., Micura, R., Breaker, R.R., and Patel, D.J., Structural basis for discriminative regulation of gene expression by adenine- and guaninesensing mRNAs, Chem. Biol., 2004, vol. 11, pp. 1729–1741.PubMedCrossRefGoogle Scholar
  44. 44.
    Edwards, T.E. and Ferre-D’Amare, A.R., Crystal structures of the Thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition, Structure, 2006, vol. 14, pp. 1459–1468.PubMedCrossRefGoogle Scholar
  45. 45.
    Nissen, P., Ippolito, J.A., Ban, N., Moore, P.B., and Steitz, T.A., RNA tertiary interactions to the large ribosomal subunit: the A-minor motif, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 4899–4903.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Noeske, J., Buck, J., Furtig, B., Nasiri, H.R., Schawalbe, H., and Wohnert, J., Interplay of ‘induced fit’ and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch, Nucleic Acids Res., 2007, vol. 35, pp. 572–583.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Collins, J.A., Irnov, I., Baker, S., and Winkler, W.C., Mechanism of mRNA destabilization by the glmS ribozyme, Genes Dev., 2007, vol. 24, pp. 3356–3368.CrossRefGoogle Scholar
  48. 48.
    Winkler, W.C., Nahvi, A., Roth, A., Collins, J.A., and Breaker, R.R., Control of gene expression by a natural metabolite-responsive ribozyme, Nature, 2004, vol. 428, pp. 281–286.PubMedCrossRefGoogle Scholar
  49. 49.
    Lee, E.R., Baker, J.L., Weinberg, Z., Sudarsan, N., and Breaker, R.R., An allosteric self-splicing ribozyme triggered by a bacterial second messenger, Science, 2010, vol. 329, pp. 845–848.PubMedCrossRefGoogle Scholar
  50. 50.
    Chen, A.G.Y., Sudarsan, N., and Breaker, R., Mechanism for gene control by a natural allosteric group I ribozyme, RNA, 2011, vol. 17, pp. 1967–1972.PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Mandal, M. and Breaker, R., Adenine riboswitches and gene activation by disruption of a transcription terminator, Nat. Struct. Mol. Biol., 2004, vol. 11, pp. 29–35.PubMedCrossRefGoogle Scholar
  52. 52.
    Winkler, W.C., Cohen-Chalamish, S., and Breaker, R., An mRNA structure that controls gene expression by binding FMN, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 15908–15913.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    McDaniel, B.A., Grundy, F.J., Artsimovitch, I., and Henkin, T.M., Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 3083–3088.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Mandal, M., Boese, B., Barrick, J.E., Winkler, W.C., and Breaker, R.R., Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria, Cell, 2003, vol. 113, pp. 577–586.PubMedCrossRefGoogle Scholar
  55. 55.
    Vitreschak, A.G., Rodionov, D.A., Mironov, A.A., and Gelfand, M.S., Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation, Nucleic Acids Res., 2002, vol. 30, pp. 3141–3151.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Roth, A. and Breaker, R.R., The structural and functional diversity of metabolite binding, Annu. Rev. Biochem., 2009, vol. 78, pp. 305–334.PubMedCrossRefGoogle Scholar
  57. 57.
    Ciampi, M.S., Rho-dependent terminators and transcription termination, Microbiology, 2006, vol. 152, pp. 2515–2528.PubMedCrossRefGoogle Scholar
  58. 58.
    Winkler, W.C., Nahvi, A., and Breaker, R.R., Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression, Nature, 2002, vol. 419, pp. 952–956.PubMedCrossRefGoogle Scholar
  59. 59.
    Barrick, J.E., Corbino, K.A., Winkler, W.C., Nahvi, A., Mandal, M., Collins, J., Lee, M., Roth, A., Sudarsan, N., Jona, I., Wickiser, J.K., and Breaker, R.R., New motifs suggest an expanded scope for riboswitches in bacterial genetic control, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 6421–6426.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Nahvi, A., Sudarsan, N., Evert, M.S., Zou, X., Brown, K.L., and Breaker, R.R., Genetic control by a metabolite binding mRNA, Chem. Biol., 2002, vol. 9, pp. 1043–1049.PubMedCrossRefGoogle Scholar
  61. 61.
    Epshtein, V., Mironov, A.S., and Nudler, E., The riboswitch-mediated control of sulfur metabolism in bacteria, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 5052–5056.PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Winkler, W.C., Nahvi, A., Sudarsan, N., Barrick, J.E., and Breaker, R.R., An mRNA structure that controls gene expression by binding S-adenosylmethionine, Nat. Struct. Biol., 2003, vol. 10, pp. 701–707.PubMedCrossRefGoogle Scholar
  63. 63.
    Grundy, F.J., Lehman, S.C., and Henkin, T.M., The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 12057–12062.PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Sudarsan, N., Wickiser, J.K., Nakamura, S., Evert, M.S., and Breaker, R.R., An mRNA structure in bacteria that controls gene expression by binding lysine, Genes Dev., 2003, vol. 17, pp. 2688–2697.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Mandal, M., Lee, M., Barrick, J.E., Weinberg, Z., Emillson, G.M., Ruzzo, W.L., and Breaker, R., A Glycine dependent riboswitch that uses cooperative binding to control gene expression, Science, 2004, vol. 306, pp. 275–279.PubMedCrossRefGoogle Scholar
  66. 66.
    Dixon, N., Duncan, J.N., Geerlings, T., Dunstan, M.S., McCarthy, J.E.G., Leys, D., and Micklefield, J., Reengineering orthogonally selected riboswitches, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, pp. 2830–2835.PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Tang, J. and Breaker, R., Rational design of allosteric ribozymes, Chem. Biol., 1997, vol. 4, pp. 453–459.PubMedCrossRefGoogle Scholar
  68. 68.
    Winkler, W.C. and Breaker, R.R., Regulation of bacterial gene expression by riboswitches, Annu. Rev. Microbiol., 2005, vol. 59, pp. 487–517.PubMedCrossRefGoogle Scholar
  69. 69.
    Verhouning, A., Karcher, D., and Bock, R., Inducible gene expression from the plastid genome by a synthetic riboswitch, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, pp. 6204–6209.CrossRefGoogle Scholar
  70. 70.
    Thompson, K.M., Syrett, H.A., Knudsen, S.M., and Ellington, A.D., Group I aptazymes as genetic regulatory switches, BMC Biotechnol., 2002, vol. 2, p. 21.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Yen, L., Svendsen, J., Lee, J.S., Gray, J.T., Magnier, M., D’Amato, R.J., and Mulligan, R.C., Exogenous control of mammalian gene expression through modulation of RNA self-cleavage, Nature, 2004, vol. 431, pp. 471–476.PubMedCrossRefGoogle Scholar
  72. 72.
    Mulhbacher, J. and Lafontaine, D., Ligand recognition determinants of guanine riboswitches, Nucleic Acids Res., 2007, vol. 35, pp. 5568–5580.PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Ott, E., Stolz, J., Lehmann, M., and Mack, M., The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis, RNA Biol., 2009, vol. 6, pp. 276–280.PubMedCrossRefGoogle Scholar
  74. 74.
    Serganov, A., Huang, L., and Patel, D.J., Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch, Nature, 2009, vol. 458, pp. 233–237.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Gerdeman, M.S., Henkin, T.M., and Hines, J.V., Solution structure of the Bacillus subtilis T-box antiterminator RNA: seven nucleotide bulge characterized by stacking and flexibility, J. Mol. Biol., 2003, vol. 326, pp. 189–201.PubMedCrossRefGoogle Scholar
  76. 76.
    Durbin, R., Eddy, S.R., Krogh, A., and Mitchison, G., Biological Sequence Analysis, Ch. 10.3: Covariance models: SCFG-Based RNA Profiles, Cambridge University Press, 1998.Google Scholar
  77. 77.
    Eddy, S.R., A memory-efficient dynamic programming algorithm for optimal alignment of a sequence to an RNA secondary structure, BMC Bioinformatics, 2002, vol. 3, p. 18.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Singh, P., Bandyopadhyay, P., Bhattacharya, S., Krishnamachari, A., and Sengupta, S., Riboswitch Detection Using Profile Hidden Markov Models, BMC Bioinformatics, 2009, vol. 10, pp. 1–13.CrossRefGoogle Scholar
  79. 79.
    Corbino, K.A., Barrick, J.E., Lim, J., Welz, R., Tucker, B.J., Puskarz, I., Mandal, M., Rudnick, N.D., and Breaker, R.R., Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alphaproteobacteria, Genome Biol., 2005, vol. 6, p. 70.CrossRefGoogle Scholar
  80. 80.
    Wang, J.X., Lee, E.R., Morales, D.R., Lim, J., and Breaker, R.R., Riboswitchers that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling, Mol. Cell., 2008, vol. 29, pp. 691–702.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Roth, A., Winkler, W.C., Regulski, E.E., Lee, B.W.K., Lim, J., Jona, I., Barrick, J.E., Ritwik, A., Kim, J.N., Welz, R., Iwata-Reuyl, D., and Breaker, R.R., A riboswitchers selective for the queuosine precursor preQ1 contains an unusually small aptamer domain, Nat. Struct. Mol. Biol., 2007, vol. 14, pp. 308–312.PubMedCrossRefGoogle Scholar
  82. 82.
    Cromie, M.J., Shi, Y., Latifi, T., and Groisman, E.A., An RNA sensor for intracellular Mg2+, Cell, 2006, vol. 125, pp. 71–84.PubMedCrossRefGoogle Scholar
  83. 83.
    Sudarsan, N., Lee, E.R., Weinberg, Z., Moy, R.H., Kim, J.N., Link, K.H., and Breaker, R.R., Riboswitches in eubacteria sense the second messenger cyclic di-GMP, Science, 2008, vol. 321, pp. 411–413.PubMedCrossRefGoogle Scholar
  84. 84.
    Bengert, P. and Dandekar, T., Riboswitch finder—a tool for identification of riboswitch RNAs, Nucleic Acids Res., 2004, vol. 32, pp. 154–159.CrossRefGoogle Scholar
  85. 85.
    Abreu-Goodger, C. and Merino, E., RibEx: a web server for locating riboswitches and other conserved bacterial regulatory elements, Nucleic Acids Res., 2005, vol. 33, pp. 690–692.CrossRefGoogle Scholar
  86. 86.
    Chang, T.H., Wu, L.C., Yeh, C.T., Liu, B.J., Huang, H.D., and Horng, J.T., Computational Identification of riboswitches based on RNA conserved functional sequences and conformations, RNA, 2009, vol. 15, pp. 1426–1430.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  1. 1.Central Rice Research Institute (CRRI)CuttackIndia
  2. 2.National Bureau of Agriculturally Important Microorganisms (NBAIM)Mau, UttarIndia

Personalised recommendations