Advertisement

Kinematics and Physics of Celestial Bodies

, Volume 35, Issue 5, pp 217–230 | Cite as

Physical Effects of the Lipetsk Meteoroid: 2

  • L. F. ChernogorEmail author
DYNAMICS AND PHYSICS OF BODIES OF THE SOLAR SYSTEM
  • 16 Downloads

Abstract—Comprehensive modeling studies of the processes induced in all geospheres by the passage and explosion of the meteoroid near the city of Lipetsk (Russia) on June 21, 2018, have been performed. Thermodynamic and plasma effects and the effects of the plume and turbulence accompanying the passage of the Lipetsk meteoroid have been estimated. It has been shown that the passage of the celestial body led to the formation of a gas–dust plume. The heated trail of the meteoroid cooled for several hours. Four stages of meteoroid-trail cooling are considered in detail. The first of these persisted for approximately 0.01 s, and the temperature of the trail decreased by a factor of two due to emissions. During the second stage (~1 s), the trail cooled due to emissions and expansion, and its temperature decreased by 15%. In the course of the third stage, which took approximately 3 s, the products of the explosion and the heated gas (thermal) with an acceleration of 100–200 m/s2, attained an ascent rate of 200 m/s, and the temperature decreased by 10%. The fourth stage persisted for 100 s, during which the thermal absorbed the cool air at an intensive rate, gradually cooled off, and decelerated. The maximum altitude of rise of the thermal reached 15–20 km. The products of the explosion (dust particles and aerosols) contained in the thermal further participated in the following three processes: a slow precipitation to the surface of the Earth, turbulent mixing with the ambient air, and transport by the predominant winds around the globe. The effect of turbulence in the trail has been shown to be well pronounced, while the effect of magnetic turbulence has been weakly displayed. The following basic parameters of the plasma in the trail have been estimated: the altitude dependences of the electron densities per unit length and per unit volume, their relaxation times, the particle collision frequencies, the plasma conductivities, and the electron temperature relaxation time. At the initial time point, the linear and volume electron densities in the trail have been shown to be equal to approximately (2–40) × 1023 m–1 and (1–4) × 1021 m–3, respectively, and the plasma conductivity to be equal to ~103 Ohm–1 m–1. The role of the dusty plasma component is discussed.

Keywords: Lipetsk meteoroid complex simulation thermodynamic effects plasma plume turbulence effects 

Notes

FUNDING

The study was funded as part of the planned financing of institutions of the Ministry of Education and Science of Ukraine, state registration number 0115SU000463.

REFERENCES

  1. 1.
    N. A. Artem’eva and V. V. Shuvalov, “Atmospheric plume of the Chelyabinsk meteoroid,” in Dynamic Processes in Geospheres, Vol. 5: Geophysical Effects of the Chelyabinsk Meteoroid’s Fall: Collection of Scientific Papers of the Institute of Geosphere Dynamics of the Russian Academy of Sciences. Special Issue (GEOS, Moscow, 2014), pp. 134–146 [in Russian].Google Scholar
  2. 2.
    V. A. Bronshten, Physics of Meteor Phenomena (Nauka, Moscow, 1981; Springer-Verlag, 1983).Google Scholar
  3. 3.
    V. A. Bronshten, “MHD-mechanism of radio emission generation of bright bolides,” Astron. Vestn. 17 (2), 94–98 (1983).ADSGoogle Scholar
  4. 4.
    V. A. Bronshten, “The entry of the large meteoroids into the atmosphere,” Astron. Vestn. 11 (1), 102–121 (1993).ADSGoogle Scholar
  5. 5.
    V. A. Bronsten, “On the physical mechanism of the large meteor bodies quasicontinuous fragmentation,” Astron. Vestn. 11 (3), 65–74 (1993).ADSGoogle Scholar
  6. 6.
    V. A. Bronsten, “Use of Grigoryan theory for calculation of the giant meteoroids fragmentation,” Astron. Vestn. 28 (2), 118–124 (1994).ADSGoogle Scholar
  7. 7.
    V. A. Bronsten, “Fragmentation and destruction of large meteor bodies in the atmosphere,” Astron. Vestn. 29 (5), 450–459 (1995).Google Scholar
  8. 8.
    B. E. Bryunelli, and A. A. Namgaladze, Physics of the Ionosphere (Nauka, Moscow, 1988) [in Russian].Google Scholar
  9. 9.
    V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas, 2nd ed. (Nauka, Moscow, 1967; Pergamon, Oxford, 1970).Google Scholar
  10. 10.
    N. N. Gor’kavyy, D. S. Likharev, and D. N. Minnibayev, “Color variations of the aerosol plume of the Chelyabinsk bolide,” in The Chelyabinsk Meteorite — One Year on the Earth: Proc. All-Russian Sci. Conf., Ed. by N. A. Antipin, A. E. Dudorov, S. N. Zamozdra, S. V. Kolisnichenko, A. V. Kocherov, and E. A. Shajgo-Rodskij (Kamennyi Poyas, Chelyabinsk, 2014), pp. 118–123 [in Russian].Google Scholar
  11. 11.
    N. N. Gor’kavyy and T. A. Taydakova, “Interaction of the Chelyabinsk bolide with the atmosphere,” in The Chelyabinsk Meteorite — One Year on the Earth: Proc. All-Russian Sci. Conf., Ed. by N. A. Antipin, A. E. Dudorov, S. N. Zamozdra, S. V. Kolisnichenko, A. V. Kocherov, and E. A. Shajgo-Rodskij (Kamennyi Poyas, Chelyabinsk, 2014), pp. 124–129 [in Russian].Google Scholar
  12. 12.
    N. N. Gor’kavyy, T. A. Taydakova, Ye. A. Provornikova, et al., “Aerosol plume of the Chelyabinsk bolide,” in The Chelyabinsk Meteorite — One Year on the Earth: Proc. All-Russian Sci. Conf., Ed. by N. A. Antipin, A. E. Dudorov, S. N. Zamozdra, S. V. Kolisnichenko, A. V. Kocherov, and E. A. Shajgo-Rodskij (Kamennyi Poyas, Chelyabinsk, 2014), pp. 130–135 [in Russian].Google Scholar
  13. 13.
    S. S. Grigoryan, “Motion and destruction of meteorites in planetary atmospheres,” Cosmic Res. 17, 724–740 (1980).ADSGoogle Scholar
  14. 14.
    Dynamic Processes in Geospheres, Vol. 5: Geophysical Effects of the Chelyabinsk Meteoroid’s Fall: Collection of Scientific Papers of the Institute of Geosphere Dynamics of the Russian Academy of Sciences. Special Issue (GEOS, Moscow, 2014).Google Scholar
  15. 15.
    V. V. Emelyanenko, O. P. Popova, N. N. Chugaj, M. A. Sheljakov, Ju. V. Pahomov, B. M. Shustov, V. V. Shuvalov, E. E. Birjukov, Ju. S. Rybnov, M. Ja. Marov, L. V. Ryhlova, S. A. Naroenkov, A. P. Kartashova, V. A. Harlamov, and I. A. Trubeckaja, “Astronomical and physical aspects of the Chelyabinsk event (February 15, 2013),” Sol. Syst. Res. 47, 240–254 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    Catastrophic Impacts of Cosmic Bodies, Ed. by V. V. Adushkin and I. V. Nemchinov, (Akademkniga, Moscow, 2005) [in Russian].Google Scholar
  17. 17.
    The Chelyabinsk Meteorite — One Year on the Earth: Proc. All-Russian Sci. Conf., Ed. by N. A. Antipin, A. E. Dudorov, S. N. Zamozdra, S. V. Kolisnichenko, A. V. Kocherov, and E. A. Shajgo-Rodskij (Kamennyi Poyas, Chelyabinsk, 2014) [in Russian].Google Scholar
  18. 18.
    V. P. Stulov, V. N. Mirskii, A. I. Vislyi, Aerodynamics of Bolides (Nauka, Moscow, 1995) [in Russian].Google Scholar
  19. 19.
    Chelyabinsk Superbolide, Ed. by N. N. Gor’kavyi and A. E. Dudorov (Chelyab. Gos. Univ., Chelyabinsk, 2016) [in Russian].Google Scholar
  20. 20.
    L. F. Chernogor, Physics and Ecology of Disasters (Khark. Nats. Univ. Im. V. N. Karazina, Kharkiv, 2012) [in Russian].Google Scholar
  21. 21.
    L. F. Chernogor, “Plasma, electromagnetic and acoustic effects of meteorite "Chelyabinsk”,” Inzh. Fiz. 8, 23–40 (2013).Google Scholar
  22. 22.
    L. F. Chernogor, “Physical effects of the Chelyabinsk meteorite passage,” Dopov. Akad. Nauk Ukr. 10, 97–104 (2013).Google Scholar
  23. 23.
    L. F. Chernogor, “The main effects of the Chelyabinsk meteorite’s fall: The results of physical and mathematical modeling,” in The Chelyabinsk Meteorite — One Year on the Earth: Proc. All-Russian Sci. Conf., Ed. by N. A. Antipin, A. E. Dudorov, S. N. Zamozdra, S. V. Kolisnichenko, A. V. Kocherov, and E. A. Shajgo-Rodskij (Kamennyi Poyas, Chelyabinsk, 2014), pp. 229–264.Google Scholar
  24. 24.
    L. F. Chernogor, “Atmospheric effects of the gas–dust trail of Chelyabinsk meteoroid,” Izv. Ross. Akad. Nauk. Fiz. Atmos. Okeana. 53, 296–306 (2017).Google Scholar
  25. 25.
    L. F. Chernogor, “Magneto-ionospheric effects of the meteoroid plume,” Geomagn. Aeron. 58, 125–132 (2018).ADSGoogle Scholar
  26. 26.
    L. F. Chernogor and Yu. B. Milovanov, “Rise of a meteoroid thermal in the Earth’s atmosphere,” Kinematics Phys. Celestial Bodies 34, 198–206 (2018).ADSCrossRefGoogle Scholar
  27. 27.
    L. F. Chernogor, “The physical effects of Romanian meteoroid. 1,” Kosm. Nauka Tekhnol. 24 (1), 49–70 (2018).CrossRefGoogle Scholar
  28. 28.
    L. F. Chernogor, “The physical effects of Romanian meteoroid. 2,” Kosm. Nauka Tekhnol. 24 (2), 18–35 (2018).CrossRefGoogle Scholar
  29. 29.
    L. F. Chernogor, “Physical effects of the Lipetsk meteoroid. 1,” Kinematics Phys. Celestial Bodies. 35 (4), 174–188 (2019).ADSCrossRefGoogle Scholar
  30. 30.
    Catastrophic Events Caused by Cosmic Objects, Ed. by V. Adushkin and I. Nemchinov (Springer-Verlag, Dordrecht, 2008).  https://doi.org/10.1007/978-1-4020-6452-4 Google Scholar
  31. 31.
    L. F. Chernogor and V. T. Rozumenko, “The physical effects associated with Chelyabinsk meteorite’s passage,” Probl. At. Sci. Technol. 86, 136–139 (2013).Google Scholar
  32. 32.
    N. N. Gorkavyi, T. A. Taidakova, and E. A. Provornikova, “Aerosol plume after the Chelyabinsk bolide,” Sol. Syst. Res. 47, 275–279 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    S. S. Grigoryan, “Physical mechanism of Chelyabinsk superbolide explosion,” Sol. Syst. Res. 47, 268–274 (2013).ADSCrossRefGoogle Scholar
  34. 34.
    J. G. Hills and M. P. Goda, “The fragmentation of small asteroids in the atmosphere,” Astron. J. 105, 1114–1144 (1993).ADSCrossRefGoogle Scholar
  35. 35.
    D. M. Hunten, R. P. Turco, O. B. Toon, et al., “Smoke and dust particles of meteoric origin in the mesosphere and stratoshpere,” J. Atmos. Sci. 37, 1342– 1357 (1980).ADSCrossRefGoogle Scholar
  36. 36.
    O. P. Popova, P. Jenniskens, V. Emelyanenko, et al., “Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization,” Science 342, 1069–1073 (2013).ADSCrossRefGoogle Scholar
  37. 37.
    O. P. Popova, P. Jenniskens, V. Emelyanenko, et al., “Supplementary materials: Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization,” Science (2013). https://www.sciencemag.org/cgi/content/ full/science.1242642/DC1. Accessed October 1, 2015.Google Scholar
  38. 38.
    R. W. Schunk and A. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry (Cambridge Univ. Press, Cambridge, 2000).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations