Advertisement

Kinematics and Physics of Celestial Bodies

, Volume 34, Issue 6, pp 290–301 | Cite as

Morphological Type and Color Indices of the SDSS DR9 Galaxies at 0.02 < z ≤ 0.06

  • D. V. DobrychevaEmail author
  • I. B. Vavilova
  • O. V. Melnyk
  • A. A. Elyiv
EXTRAGALACTIC ASTRONOMY

Abstract—The correlations of the color indices of central galaxies (Mr < –20.7) and their faint neighboring galaxies (Mr < –20.7) using the sample based on the SDSS DR9 (N = 60 561) have been studied. The galaxy sample was limited by the red shift 0.02 < z ≤ 0.06 and absolute magnitude –24m < Mr < –19.4m. The “Random Forest” method of machine learning was used to determine the morphological type of the galaxies. The statistically significant correlation was found only for the “central galaxies–nearest neighbor galaxy” pairs in which the distance between the components is less than 100 kpc and each of the components is an early type galaxy. The obtained results testify to the hierarchical scenario of the evolution of galaxies.

Keywords: galaxies SDSS galaxies morphology color indices machine learning 

Notes

ACKNOWLEDGMENTS

We thank V.E. Karachentseva and Prof. M. Capaccioli for valuable advice and discussion of the results. The study was funded in part within the Target Complex Program for the Scientific Space Research of the National Academy of Sciences of Ukraine. We used the data of the Sloan Digital Sky Survey (www.sdss.org) and the HyperLEDA database [41].

REFERENCES

  1. 1.
    F. Acero, M. Ackermann, M. Ajello, et al., “VizieR online data catalog: Fermi LAT third source catalog (3FGL) (Acero+, 2015),” VizieR Online Data Catalog 221 (2015).Google Scholar
  2. 2.
    S. S. Allam, D. L. Tucker, J. A. Smith, et al., “Merging galaxies in the Sloan Digital Sky Survey early data release,” Astron. J. 127, 1883–1899 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    I. K. Baldry, K. Glazebrook, J. Brinkmann, et al., “Quantifying the bimodal color-magnitude distribution of galaxies,” Astrophys. J. 600, 681–694 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    S. P. Bamford, R. C. Nichol, I. K. Baldry, et al., “Galaxy Zoo: The dependence of morphology and colour on environment,” Mon. Not. R. Astron. Soc. 393, 1324–1352 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    K. Bekki and Y. Shioya, “Dynamics of galaxy merging and the origin of the color-magnitude relation of elliptical galaxies,” Astrophys. J. 486, 197–200 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    E. F. Bell, C. Wolf, K. Meisenheimer, et al., “Nearly 5000 distant early-type galaxies in COMBO-17: a red sequence and its evolution since z ~ I,” Astrophys. J. 608, 752–767 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    M. R. Blanton, D. Eisenstein, D. W. Hogg, D. J. Schlegel, and J. Brinkmann, “Relationship between environment and the broadband optical properties of galaxies in the Sloan Digital Sky Survey,” Astrophys. J. 629, 143–157 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    K. Bundy, R. S. Ellis, C. J. Conselice, et al., “The mass assembly history of field galaxies: Detection of an evolving mass limit for star-forming galaxies,” Astrophys. J. 651, 120–141 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    G. Chabrier, “Galactic stellar and substellar initial mass function,” Publ. Astron. Soc. Pac. 115, 763–795 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    I. V. Chilingarian, A.-L. Melchior, and I. Y. Zolotukhin, “Analytical approximations of K-corrections in optical and near-infrared bands,” Mon. Not. R. Astron. Soc. 405, 1409–1420 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    I. V. Chilingarian and I. Y. Zolotukhin, “A universal ultraviolet-optical colour-colour-magnitude relation of galaxies,” Mon. Not. R. Astron. Soc. 419, 1727–1739 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    R. W. Chuter, O. Almaini, W. G. Hartley, et al., “Galaxy environments in the UKIDSS ultra deep survey,” Mon. Not. R. Astron. Soc. 413, 1678–1686 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    O. Cucciati, A. Iovino, C. Marinoni, et al., “The VIMOS VLT deep survey: The build-up of the colour-density relation,” Astron. Astrophys. 458, 39–52 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    X.-F. Deng, Y. Xin, J. Peng, and P. Wu, “Dependence of the Holmberg effect on separations between paired galaxies,” Astrophysics 53, 342–350 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    D. V. Dobrycheva, “The new galaxy sample from SDSS DR9 at 0.003 < z < 0.1,” Odessa Astron. Publ. 26, 187 (2013).ADSGoogle Scholar
  16. 16.
    D. V. Dobrycheva, O. V. Melnyk, I. B. Vavilova, and A. A. Elyiv, “Environmental density vs. colour indices of the low redshifts galaxies,” Astrophysics 58, 168–180 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    D. V. Dobrycheva and I. B. Vavilova, “No the Holmberg effect for galaxy pairs selected from the SDSS DR9 at z ≤ 0.06,” Odessa Astron. Publ. 29, 37–41 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    D. V. Dobrycheva, I. B. Vavilova, O. V. Melnyk, and A. A. Elyiv, “Machine learning technique for morphological classification of galaxies at z ≤ 0.1 from the SDSS” (2017). arXiv 1712.08955 [astro-ph.GA].Google Scholar
  19. 19.
    A. Dressier, “Galaxy morphology in rich clusters — Implications for the formation and evolution of galaxies,” Astrophys. J. 236, 351–365 (1980).ADSCrossRefGoogle Scholar
  20. 20.
    A. Dressier, A. Oemler, Jr., W. J. Couch, et al., “Evolution since z = 0.5 of the morphology-density relation for clusters of galaxies,” Astrophys. J. 490, 577–591 (1997).ADSCrossRefGoogle Scholar
  21. 21.
    A. Elyiv, O. Melnyk, and I. Vavilova, “High-order 3D Voronoi tessellation for identifying isolated galaxies, pairs and triplets,” Mon. Not. R. Astron. Soc. 394, 1409–1418 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    A. Franco-Balderas, H. M. Hernández-Toledo, D. Dultzin-Hacyan, and G. García-Ruiz, “BVRI surface photometry of mixed morphology pairs of galaxies. I. The first data set,” Astron. Astrophys. 406, 415–426 (2003).ADSCrossRefGoogle Scholar
  23. 23.
    A. Gonzalez, A. Zabludoff, D. Zaritsky, Extending the Fundamental Plane Using Intracluster Light, NOAO Proposal (2003).Google Scholar
  24. 24.
    J. E. Gunn, M. Carr, C. Rockosi, et al., “The Sloan Digital Sky Survey photometric camera,” Astron. J. 116, 3040–3081 (1998).ADSCrossRefGoogle Scholar
  25. 25.
    W. G. Hartley, C. J. Conselice, A. Mortlock, S. Foucaud, and C. Simpson, “Galactic conformity and central/satellite quenching, from the satellite profiles of M* galaxies at 0.4 < z < 1.9 in the UKIDSS UDS,” Mon. Not. R. Astron. Soc. 451, 1613–1636 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    D. W. Hogg, M. R. Blanton, J. Brinchmann, et al., “The dependence on environment of the color-Magnitude relation of galaxies,” Astrophys. J. Lett. 601, L29–L32 (2004).ADSCrossRefGoogle Scholar
  27. 27.
    V. Icke and R. van de Weygaert, “The galaxy distribution as a Voronoi foam,” Q. J. R. Astron. Soc. 32, 85–112 (1991).ADSGoogle Scholar
  28. 28.
    I. D. Karachentsev, Double Galaxies (Nauka, Moscow, 1987) [in Russian].Google Scholar
  29. 29.
    V. E. Karachentseva, I. D. Karachentsev, and O. V. Melnyk, “Faint companions of isolated 2MIG galaxies,” Astrophys. Bull. 66, 389–406 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    V. E. Karachentseva, O. V. Mel’nik, I. B. Vavilova, and D. I. Makarov, “Triplets of galaxies in the local supercluster. 2. Virial and total masses,” Kinematics Phys. Celestial Bodies 21, 150–159 (2005).Google Scholar
  31. 31.
    V. E. Karachentseva and I. B. Vavilova, “Clustering of low surface brightness dwarf galaxies. I. General properties,” Bull. Spec. Astrophys. Obs. 37, 98–118 (1994).ADSGoogle Scholar
  32. 32.
    V. E. Karachentseva and I. B. Vavilova, “Clustering of dwarf galaxies with low surface brightness. II. The Virgo cluster,” Kinematika Fiz. Nebesnykh Tel 11 (5), 38–48 (1995).Google Scholar
  33. 33.
    V. E. Karachentseva and I. B. Vavilova, “Clustering of dwarf galaxies with low surface brightness. III. The Fornax cluster,” Kinematika Fiz. Nebesnykh Tel 11 (5), 49–56 (1995).Google Scholar
  34. 34.
    G. Kauffmann, S. D. M. White, T. M. Heckman, et al., “The environmental dependence of the relations between stellar mass, structure, star formation and nuclear activity in galaxies,” Mon. Not. R. Astron. Soc. 353, 713–731 (2004).ADSCrossRefGoogle Scholar
  35. 35.
    K. Kovač, S. J. Lilly, C. Knobel, et al., “The 10k zCOSMOS: Morphological transformation of galaxies in the group environment since z ~ 1,” Astrophys. J. 718, 86–104 (2010).ADSCrossRefGoogle Scholar
  36. 36.
    K. Kovač, S. J. Lilly, C. Knobel, et al., “zCOSMOS 20k: Satellite galaxies are the main drivers of environmental effects in the galaxy population at least to z ~ 0.7,” Mon. Not. R. Astron. Soc. 438, 717–738 (2014).ADSCrossRefGoogle Scholar
  37. 37.
    K. Kreckel, E. Platen, M. A. Aragón-Calvo, et al., “The void galaxy survey: Optical properties and H I morphology and kinematics,” Astron. J. 144, 16 (2012).ADSCrossRefGoogle Scholar
  38. 38.
    J. Krywult, L. A. M. Tasca, A. Polio, et al., “The VIMOS public extragalactic redshift survey (VIPERS). The coevolution of galaxy morphology and colour to z ~ 1,” Astron. Astrophys. 598, A120 (2017).CrossRefGoogle Scholar
  39. 39.
    J. C. Lee, A. Gil de Paz, R. C. Kennicutt, Jr., et al., “A GALEX ultraviolet imaging survey of galaxies in the local volume,” Astrophys. J., Suppl. Ser. 192, 6 (2011).ADSCrossRefGoogle Scholar
  40. 40.
    L. Lin, D. R. Patton, D. C. Koo, et al., “The redshift evolution of wet, dry, and mixed galaxy mergers from close galaxy pairs in the DEEP2 galaxy redshift survey,” Astrophys. J. 681, 232–243 (2008).ADSCrossRefGoogle Scholar
  41. 41.
    D. Makarov, P. Prugniel, N. Terekhova, H. Courtois, and I. Vauglin, “HyperLEDA. III. The catalogue of extragalactic distances,” Astron. Astrophys. 570, A13 (2014).ADSCrossRefGoogle Scholar
  42. 42.
    O. V. Mel’nik, “Interacting galaxies in sparsely populated groups,” Astron. Lett. 32, 302–307 (2006).ADSCrossRefGoogle Scholar
  43. 43.
    O. Melnyk, V. Karachentseva, and I. Karachentsev, “Star formation rates in isolated galaxies selected from the Two-Micron All-Sky Survey,” Mon. Not. R. Astron. Soc. 451, 1482–1495 (2015).ADSCrossRefGoogle Scholar
  44. 44.
    O. Melnyk, S. Mitronova, and V. Karachentseva, “Colours of isolated galaxies selected from the Two-Micron All-Sky Survey,” Mon. Not. R. Astron. Soc. 438, 548–556 (2014).ADSCrossRefGoogle Scholar
  45. 45.
    O. V. Melnyk, D. V. Dobrycheva, and I. B. Vavilova, “Morphology and color indices of galaxies in Pairs: Criteria for the classification of galaxies,” Astrophysics 55, 293–305 (2012).ADSCrossRefGoogle Scholar
  46. 46.
    O. V. Melnyk, A. A. Elyiv, and I. B. Vavilova, “Structure of the Local Supercluster of Galaxies Revealed by 3D Voronoi tessellation method,” Kinematics Phys. Celestial Bodies 22, 211–220 (2006).Google Scholar
  47. 47.
    O. V. Melnyk and I. B. Vavilova, “Galaxy triplets of the local supercluster. 3. Configuration properties,” Kinematika Fiz. Nebesnykh Tel 22, 422–431 (2006).ADSGoogle Scholar
  48. 48.
    A. M. Mickaelian, “Astronomical surveys and big data,” (2015). arXiv 1511.07322.Google Scholar
  49. 49.
    M. Mignoli, G. Zamorani, M. Scodeggio, et al., “The zCOSMOS redshift survey: The three-dimensional classification cube and bimodality in galaxy physical properties,” Astron. Astrophys. 493, 39–49 (2009).ADSCrossRefGoogle Scholar
  50. 50.
    N. G. Pulatova, I. B. Vavilova, U. Sawangwit, I. Babyk, and S. Klimanov, “The 2MIG isolated AGNs -1. General and multiwavelength properties of AGNs and host galaxies in the Northern sky,” Mon. Not. R. Astron. Soc. 447, 2209–2223 (2015).ADSCrossRefGoogle Scholar
  51. 51.
    K. Schawinski, C. M. Urry, B. D. Simmons, et al., “The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early- and late-type galaxies,” Mon. Not. R. Astron. Soc. 440, 889–907 (2014).ADSCrossRefGoogle Scholar
  52. 52.
    D. J. Schlegel, D.P. Finkbeiner, and M. Davis, “Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds,” Astrophys. J. 500, 525–553 (1998).ADSCrossRefGoogle Scholar
  53. 53.
    N. Scoville, R. G. Abraham, H. Aussel, et al., “COSMOS: Hubble Space Telescope observations,” Astrophys. J., Suppl. Ser. 172, 38–45 (2007).ADSCrossRefGoogle Scholar
  54. 54.
    R. A. Skibba, S. P. Bamford, R. C. Nichol, et al., “Galaxy Zoo: Disentangling the environmental dependence of morphology and colour,” Mon. Not. R. Astron. Soc. 399, 966–982 (2009).ADSCrossRefGoogle Scholar
  55. 55.
    I. Strateva, Ž. Ivezić, G. R. Knapp, et al., “Color separation of galaxy types in the Sloan Digital Sky Survey Imaging Data,” Astron. J. 122, 1861–1874 (2001).ADSCrossRefGoogle Scholar
  56. 56.
    T. Tal, A. Dekel, P. Oesch, et al., “Observations of environmental quenching in groups in the 11 GYR since z = 2.5: Different quenching for central and satellite galaxies,” Astrophys. J. 789, 164 (2014).ADSCrossRefGoogle Scholar
  57. 57.
    D. A. Thilker, L. Bianchi, D. Schiminovich, et al., “NGC 404: A rejuvenated lenticular galaxy on a merger-induced, blueward excursion into the green valley,” Astrophys. J. Lett. 714, L171–L175 (2010).ADSCrossRefGoogle Scholar
  58. 58.
    D. Thomas, C. Maraston, R. Bender, and C. Mendes de Oliveira, “The epochs of early-type galaxy formation as a function of environment,” Astrophys. J. 621, 673– 694 (2005).ADSCrossRefGoogle Scholar
  59. 59.
    J. L. Tinker, A. Leauthaud, K. Bundy, et al., “Evolution of the stellar-to- dark matter relation: Separating star-forming and passive galaxies from z = 1 to 0,” Astrophys. J. 778, 93 (2013).ADSCrossRefGoogle Scholar
  60. 60.
    I. Trujillo and J. A. L. Aguerri, “Quantitative morphological analysis of the Hubble Deep Field North and Hubble Deep Field South-1. Early- and late-type luminosity-size relations of galaxies out to z ~ 1,” Mon. Not. R. Astron. Soc. 355, 82–96 (2004).ADSCrossRefGoogle Scholar
  61. 61.
    F. C. van den Bosch, D. Aquino, X. Yang, et al., “The importance of satellite quenching for the build-up of the red sequence of present-day galaxies,” Mon. Not. R. Astron. Soc. 387, 79–91 (2008).ADSCrossRefGoogle Scholar
  62. 62.
    I. Vavilova and O. Melnyk, “Voronoi tessellation for galaxy distribution. Mathematics and its Applications,” in Voronoi’s Impact on Modern Science, Vol. 3: Proceedings of the Third Voronoi Conference on Analytic Number Theory and Spatial Tessellations, Ed. by H. Syta, A. Yurachkivsky, and P. Engel (Kyiv, Ukraine, 2005), pp. 203–212, in Ser.: Proceedings of the Institute of Mathematics of the NAS of Ukraine, Vol. 55.Google Scholar
  63. 63.
    I. B. Vavilova, O. V. Melnyk, and A. A. Elyiv, “Morphological properties of isolated galaxies vs. isolation criteria,” Astron. Nachr. 330, 1004 (2009).ADSCrossRefGoogle Scholar
  64. 64.
    W. Voges, B. Aschenbach, T. Boiler, et al., “VizieR online data catalog: ROSAT all-sky survey faint source catalog (Voges+ 2000),” VizieR Online Data Catalog 9029 (2000).Google Scholar
  65. 65.
    A. R. Wetzel, J. L. Tinker, C. Conroy, and F. C. van den Bosch, “Galaxy evolution near groups and clusters: Ejected satellites and the spatial extent of environmental quenching,” Mon. Not. R. Astron. Soc. 439, 2687–2700 (2014).ADSCrossRefGoogle Scholar
  66. 66.
    E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, et al., “The Wide-field Infrared Survey Explorer (WISE): Mission description and initial on-orbit performance,” Astron. J. 140, 1868–1881 (2010).ADSCrossRefGoogle Scholar
  67. 67.
    D. G. York, J. Adelman, J. E. Anderson, Jr., et al., “The Sloan Digital Sky Survey: Technical summary,” Astron. J. 120, 1579–1587 (2000).ADSCrossRefGoogle Scholar
  68. 68.
    L. Zaninetti, “Dynamical Voronoi tessellation. II — The three-dimensional case,” Astron. Astrophys. 233, 293–300 (1990).ADSGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • D. V. Dobrycheva
    • 1
    Email author
  • I. B. Vavilova
    • 1
  • O. V. Melnyk
    • 1
  • A. A. Elyiv
    • 1
  1. 1.Main Astronomical Observatory, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations