Kinematics and Physics of Celestial Bodies

, Volume 29, Issue 3, pp 107–119 | Cite as

Specific features of VLF wave propagation in the earth’s inner magnetosphere

  • D. I. MendzhulEmail author
  • O. V. Agapitov
  • O. K. Cheremnykh
Solar Physics


The ray trajectories of waves in the very low frequency (VLF) range in the case of nonducted propagation in the earth’s inner magnetosphere are studied as functions of location of their source region, frequency, and initial angle between the vector of wave normal and intensity vector of external magnetic field. Simulation is performed on the basis of geometric ray tracing approach in multicomponent plasma. The parameters of the magnetospheric medium were calculated using a diffusion model of the concentration distribution of plasma components and the International Geomagnetic Reference Field (IGRF) model. It is shown that the magnetospheric wave reflection can occur if the lower hybrid resonance frequency is greater than its own wave frequency (ω LHF > ω), i.e., at the latitudes λ ≈ 50°. The simulation results confirm that the quasi-longitudinal approximation cannot be used to describe the magnetospheric whistler propagation. We present simulations of propagation of chorus-type wave magnetospheric emissions that were performed using realistic wave distributions over initial parameters. In particular, we present distributions of chorus waves over directions of wave vector as functions of geomagnetic latitude; these distributions are required to study the particle scattering and acceleration processes in the radiation belts. Our results well agree with CLUSTER satellite measurements.


Celestial Body Radiation Belt Geomagnetic Latitude Whistler Wave International Geomagnetic Reference Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Agapitov, V. Krasnoselskikh, T. Dudok De Wit, et al., “Multispacecraft observations of chorus emissions as a tool for the plasma density fluctuations’ remote sensing,” J. Geophys. Res., 116, A09222 (2011). doi 10.1029/2011JA016540.ADSCrossRefGoogle Scholar
  2. 2.
    O. Agapitov, V. Krasnoselskikh, Y. V. Khotyaintsev, and G. Rolland, “A statistical study of the propagation characteristics of whistler waves observed by cluster,” Geophys. Res. Lett. 38, L20103 (2011). doi 10.1029/2011GL049597.ADSCrossRefGoogle Scholar
  3. 3.
    O. Agapitov, V. Krasnoselskikh, Yu. Zaliznyak, et al., “Chorus source region localization in the Earth’s outer magnetosphere using THEMIS measurements,” Ann. Geophys. 28, 1733–1386 (2010). doi 10.5194/angeo-28-1377-2010.CrossRefGoogle Scholar
  4. 4.
    O. Agapitov, V. Krasnoselskikh, Yu. Zaliznyak, et al., “Observations and modeling of forward and reflected chorus waves captured by THEMIS,” Ann. Geophys. 29, 541–550 (2011). doi 10.5194/angeo-29-541-2011.5.ADSCrossRefGoogle Scholar
  5. 5.
    J. J. Angerami and J. O. Thomas, “Studies of planetary atmospheres 1. The distribution of electrons and ions in the Earth’s exosphere,” J. Geophys. Res. 69(21), 4537–4560 (1964). doi 10.1029/JZ069i021p04537.ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    A. Artemyev, O. Agapitov, H. Breuillard, et al., “Electron pitch-angle diffusion in radiation belts: The effects of whistler wave oblique propagation,” Geophys. Res. Lett. 39, L08105 (2012). doi 10.1029/2012HL051393.ADSCrossRefGoogle Scholar
  7. 7.
    J. Bortnik, R. M. Thorne, N. P. Meredith, and O. Santolik, “Ray tracing of penetrating chorus and its implications for the radiation belts,” Geophys. Res. Lett. 34, L15109 (2007). doi 10.1029/2007GL030040.ADSCrossRefGoogle Scholar
  8. 8.
    W. J. Burtis and R. A. Helliwell, “Magnetospheric chorus: occurrence patterns and normalized frequency,” J. Geophys. Res. 24, 1007–1024 (1976).Google Scholar
  9. 9.
    R. K. Burton and R. E. Holzer, “The origin and propagation of chorus in the outer magnetosphere,” J. Geophys. Res. 79, 1014–1023 (1974).ADSCrossRefGoogle Scholar
  10. 10.
    J. Chum and O. Santolik, “Propagation of whistler-mode chorus to low altitudes: divergent ray trajectories and ground accessibility,” Ann. Geophys. 23, 3727–3738 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    D. L. Gallagher, P. D. Craven, and R. H. Comfort, “Global core plasma model,” J. Geophys. Res. 105, 18119–18834 (2000). doi 10.1029/1999JA000241.CrossRefGoogle Scholar
  12. 12.
    R. Gendrin, “Le guidage des whistlers par le champ magnetique,” Planet. Space Sci. 5, 274 (1961). doi 10.1016/0032-0633(61)90096-4.ADSCrossRefGoogle Scholar
  13. 13.
    V. L. Ginzburg, The Propagation of Electromagnetic Waves in Plasmas (Pergamon Press, New York, 1970).Google Scholar
  14. 14.
    R. A. Helliwell, “A theory of discrete emissions from the magnetosphere,” J. Geophys. Res. 72, 4773–4790 (1967).ADSCrossRefGoogle Scholar
  15. 15.
    R. B. Horne and R. M. Thorne, “Relativistic electron acceleration and precipitation during resonant interactions with whistler mode chorus,” Geophys. Res. Lett. 30(10), 1527 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    C. F. Kennel and H. E. Petschek, “Limit on stably trapped particle fluxes,” J. Geophys. Res. 71(1), 1–28 (1966). doi 10.1029/JZ07i001p00001.ADSCrossRefGoogle Scholar
  17. 17.
    M. J. LeDocq, D. A. Gurnett, and G. B. Hospodarsky, “Chorus source locations from VLF Poynting flux measurements with the polar spacecraft,” Geophys. Res. Lett. 25(21), 4063–4066 (1998). doi 10.1019/1998GL900071.ADSCrossRefGoogle Scholar
  18. 18.
    W. Li, R. M. Thorne, V. Angelopoulos, et al., “Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft,” Geophys. Res. Lett. 36, L09104 (2009). doi 10.1029/2009GL037595.ADSCrossRefGoogle Scholar
  19. 19.
    L. R. Lyons, “General relations for resonant particle diffusion in pitch angle and energy,” J. Plas. Phys. 12, 45–49 (1974). doi 10.1017/S0022377800024910.ADSCrossRefGoogle Scholar
  20. 20.
    N. P. Meredith, R. B. Horne, and R. R. Anderson, “Substrom dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies,” J. Geophys. Res. 106, 178 (2001). doi 10.1029/2000JA900156.Google Scholar
  21. 21.
    D. Mourenas, A. V. Artemyev, J.-F. Ripoll, et al., “Timescales for electron quasi-linear diffusion by parallel and oblique lower-band chorus waves,” J. Geophys. Res. (2012). doi: 10.1029/2012JA017717.Google Scholar
  22. 22.
    I. Nagano, S. Yagitani, H. Kojima, and H. Matsumoto, “Analysis of wave normal and Poynting vectors of the chorus emissions observed by Geotail,” J. Geomagn. Geoelectr. 48, 299–307 (1996).CrossRefGoogle Scholar
  23. 23.
    Y. Omura, D. Nunn, H. Matsumoto, and M. J. Rycroft, “A Review of observational, theoretical and numerical studies of VLF triggered emissions,” J. Atoms. and Terr. Phys 53, 351–368 (1991).ADSCrossRefGoogle Scholar
  24. 24.
    M. Parrot, O. Santolik, N. Cornilleau-Wehrlin, et al., “Source location of chorus emissions observed by CLUSTER,” Ann. Geophys. 21, 473–480 (2003).ADSCrossRefGoogle Scholar
  25. 25.
    M. Parrot, O. Santolik, N. Cornilleau-Wehrlin, et al., “Magnetospherically reflected chorus waves revealed by ray tracing with CLUSTER data,” Ann. Geophys. 21, 1111–1120 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    O. Santolik, D. A. Gurnett, J. S. Pickett, et al., “Spatio-temporal structure of storm-time chorus,” J. Geophys. Res. 108(A7), 1278 (2003). doi 10.1029/2002JA009791.CrossRefGoogle Scholar
  27. 27.
    S. S. Sazhin and M. Hayakawa, “Magnetospheric chorus emissions: A review,” Planet. Space Sci. 40, 681–697 (1992).ADSCrossRefGoogle Scholar
  28. 28.
    D. Shklyar, “Linear waves properties: Plasma Physics,” Plasmas Heliogeophysics 2, 390–489 (2008).Google Scholar
  29. 29.
    D. R. Shklyar, “On the nature of particle energization via resonant wave-particle interaction in the inhomogeneous magnetospheric plasma,” Ann. Geophys. 29, 1179–1188 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    V. Y. Trakhtengerts, “A generation mechanism for chorus emission,” Ann. Geophys. 17, 95–100 (1999).ADSGoogle Scholar
  31. 31.
    B. T. Tsurutani and E. J. Smith, “Postmidnight chorus: A substorm phenomenon,” J. Geophys. Res. 79(1), 118–127 (1974). doi 10.1029/JA079i001p00118.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • D. I. Mendzhul
    • 1
    Email author
  • O. V. Agapitov
    • 2
    • 3
    • 4
  • O. K. Cheremnykh
    • 1
  1. 1.Space Research InstituteNational Academy of Sciences of Ukraine and National Space Agency of UkraineKyivUkraine
  2. 2.Taras Shevchenko National University of KyivKyivUkraine
  3. 3.Le StudiumInstitute for Advanced StudiesOrleansFrance
  4. 4.LPC2E/CNRS - University of OrleansOrleansFrance

Personalised recommendations