Kinematics and Physics of Celestial Bodies

, Volume 28, Issue 2, pp 62–68

Bicentennial decrease of the solar constant leads to the Earth’s unbalanced heat budget and deep climate cooling

Solar Physics

DOI: 10.3103/S088459131202002X

Cite this article as:
Abdusamatov, K.I. Kinemat. Phys. Celest. Bodies (2012) 28: 62. doi:10.3103/S088459131202002X

Abstract

Long-wave energy emitted by the Earth-atmosphere into space is characterized by changes in power over time that always lag behind the changes in power of the absorbed solar radiation due to slow variation in enthalpy of the Earth-atmosphere system. Long-term variation of the solar energy radiation absorbed by the Earth remains uncompensated by the energy radiated into space over the interval of time that is determined by the thermal inertia. The basic state of the climate system is when the debit and credit sides in the Earth’s global annual mean energy budget (including the air and water envelopes) are almost always unbalanced. The annual mean balance of the heat budget of the Earth-atmosphere over a long time period will reliably define the behavior and magnitude of the energy excess accumulated by the Earth or energy deficit to allow us to determine adequately and to predict beforehand the trend and amplitude of the forthcoming climate change using the prognosis of variations in the total solar irradiance (solar constant). The decrease in solar constant has been observed since the early 1990s. The Earth as a planet will have a negative balance in the energy budget in the future as well, because the Sun is entering the decline phase of the bicentennial luminosity changes. This will lead to a drop in temperature in approximately 2014. The increase in albedo and decrease in greenhouse gas concentration in the atmosphere will result in the additional decrease in absorbed portion of the solar energy and reduced greenhouse effect. The additional drop in temperature exceeding the effect of decreased solar constant can occur as a result of successive feedback effects. A deep bicentennial minimum in solar constant is to be anticipated in 2042 ± 11 and the 19th Little Ice Age (for the last 7500 years) may occur in 2055 ± 11.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Allerton Press, Inc. 2012

Authors and Affiliations

  1. 1.Central Astronomical Observatory at PulkovoRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations