Advertisement

Preliminary prediction of solar cycles 24 and 25 based on the correlation between cycle parameters

  • M. I. PishkaloEmail author
Solar Physics

Abstract

The correlation between various parameters of solar cycles 1–23 is investigated. The derived regressions are used to make predictions of solar cycles 24 and 25. It is expected that solar cycle 24 will reach its maximum amplitude of 110.2 ± 33.4 in April–June 2012 and the next minimum will occur in December 2018–January 2019. The duration of solar cycle 24 will be about 11.1 years. Solar cycle 25 will reach its maximum amplitude of 112.3 ± 33.4 approximately in April–June 2023.

Keywords

Solar Activity Solar Cycle Solar Phys Sunspot Number Celestial Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kh. I. Abdusamatov, Kin. Fiz. Nebesn. Tel 23, 141 (2007).Google Scholar
  2. 2.
    Yu. I. Vitinskii, Cyclicity and Predictions of Solar Activity (Nauka, Leningrad, 1973) [in Russian].Google Scholar
  3. 3.
    N. N. Kontor, G. P. Lyubimov, N. V. Pereslegina, and T. G. Khotilovskaya, Solnech. Dannye, no. 11, (74) (1983).Google Scholar
  4. 4.
    M. N. Khramova, S. A. Krasotkin, and E. V. Kononovich, Electronic Journal “Investigated in Russia”, 1–4, 1169(2001) (http://zhurnal.ape.relarn.ru/articles/2001/107.pdf).Google Scholar
  5. 5.
    V. F. Chistyakov, Solnech. Dannye, no. 1, 97 (1983).Google Scholar
  6. 6.
    O. G. Badalyan, V. N. Obridko, and J. S kora, Solar Phys. 199, 421 (2001).CrossRefADSGoogle Scholar
  7. 7.
    M. A. Clilverd, E. Clarke, T. Ulich, et al., Space Weather 4, S09005 (2006).Google Scholar
  8. 8.
    M. Dikpati, G. de Toma, and P. A. Gilman, Geophys. Res. Lett. 33, L05102 (2006).Google Scholar
  9. 9.
    Z.-L. Du, Astron. J. 132, 1485 (2006).CrossRefADSGoogle Scholar
  10. 10.
    Z. Du and Sh. Du, Solar Phys. 238, 431 (2006).CrossRefADSGoogle Scholar
  11. 11.
    Z.-L. Du, H.-N. Wang, and X.-T. He, Chin. J. Astron. Astrophys. 6, 489 (2006).CrossRefADSGoogle Scholar
  12. 12.
    S. Duhau, Solar Phys. 213, 203 (2003).CrossRefADSGoogle Scholar
  13. 13.
    D. H. Hathaway and R. M. Wilson, Solar Phys. 224, 5 (2004).CrossRefADSGoogle Scholar
  14. 14.
    D. H. Hathaway and R. M. Wilson, Geophys. Res. Lett. 33, L18101 (2006).Google Scholar
  15. 15.
    K. M. Hiremath, arXiv:astro-ph/0704.1346v1 (2007).Google Scholar
  16. 16.
    J. Javaraiah, Mon. Not. R. Astron. Soc. 377, L34 (2007).CrossRefADSGoogle Scholar
  17. 17.
    R. P. Kane, Solar Phys. 243, 205 (2007).CrossRefADSGoogle Scholar
  18. 18.
    R. P. Kane, Solar Phys. 246, 471 (2007).CrossRefADSGoogle Scholar
  19. 19.
    P. Lantos, Solar Phys. 236, 199 (2006).CrossRefADSGoogle Scholar
  20. 20.
    P. Lantos and O. Richard, Solar Phys. 182, 231 (1998).CrossRefADSGoogle Scholar
  21. 21.
    K.-J. Li, P.-X. Gao, and T.-W. Su, Chin. J. Astron. Astrophys. 5, 539 (2005).CrossRefADSGoogle Scholar
  22. 22.
    G. Maris and A. Oncica, Sun and Geosphere 1, 8 (2006).ADSGoogle Scholar
  23. 23.
    K. Schatten, Geophys. Res. Lett. 32, L21106 (2005).Google Scholar
  24. 24.
    S. Sello, Astron. Astrophys. 410, 691 (2003).CrossRefADSGoogle Scholar
  25. 25.
    L. Svalgaard, E. W. Cliver, and Y. Kamide, Geophys. Res. Lett. 32, L01104 (2005).Google Scholar
  26. 26.
    R. J. Thompson, Solar Phys. 148, 383 (1993).CrossRefADSGoogle Scholar
  27. 27.
    A. G. Tlatov, arXiv:astro-ph/0703.681v1 (2007).Google Scholar
  28. 28.
    A. G. Tlatov, ArXiv:astro-ph/0706.1624v1 (2007).Google Scholar
  29. 29.
    L. B. Tsirulnik, T. V. Kuznetsova, and V. N. Oraevsky, Adv. Space Res. 20, 2369 (1997).CrossRefADSGoogle Scholar
  30. 30.
    J.-L. Wang, J.-C. Gong, S.-Q. Liu, et al., Chin. J. Astron. Astrophys. 2, 557 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2008

Authors and Affiliations

  1. 1.Astronomical ObservatoryTaras Shevchenko Kiev National UniversityKievUkraine

Personalised recommendations