Seismic Instruments

, Volume 54, Issue 6, pp 642–649 | Cite as

Development of Innovative Methodological Support for Marine Gravimetric Surveys

  • V. N. Koneshov
  • L. K. Zheleznyak
  • V. N. Soloviev
  • P. S. MikhailovEmail author


The authors discuss their main achievements in developing innovative methodological support for marine gravimetric surveys. They have actively participated in the development of gravimeters and created several generations of gravimetric equipment in cooperation with other organizations. The main characteristics and results of laboratory and marine tests of the mobile Chekan-AM and Shelf gravimetric systems are briefly considered. These systems have operated successfully in harsh Arctic conditions, including the first high-precision marine gravimetric survey in the region of the North Pole. The authors describe the methodological support, results from modern models of Earth’s gravitational field, and integration of data from various gravimetric instruments in the interests of marine gravimetry. The increase in accuracy and resolution of Earth gravitational field models has led to their use beyond solving only fundamental problems. In most areas of the World Ocean, the model field can be used as a reference field when performing a direct marine gravimetric survey. Innovative developments have increased the reliability and accuracy of marine surveys primarily due to the control and correction of systematic errors arising in marine measurements. They make it possible with no loss of measurement reliability to produce surveys at marine test ranges with an error of 0.5 mGal or less, expand the planning capabilities of the survey network, increase the reliability of long-term route surveys, reduce the time of reference measurements, and perform marine gravimetric surveys with only one onboard marine gravimeter and no need for shore-based reference points. An innovative method of accounting for the ocean tide with loading models of the ocean gravitational effect was developed based on the ATLANTIDA3.1_2014 program. Experiments have shown that random errors can thus be reduced by more than 20%. The results of the research have been used to develop ready-made innovative and promising methods for measuring the parameters of Earth’s gravitational field on the surface water area of the World Ocean.


Earth’s gravitational field marine gravimetry modern global models of Earth’s gravitational field ocean tide 



Development of the methods was supported by the Russian Foundation for Basic Research (project no. 16-35-00434).


  1. 1.
    Drobyshev, N.V., Zheleznyak, L.K., Klevtsov, V.V., Koneshov, V.N., and Solov’ev, V.N., Methods and problems of studying gravity field in the World Ocean, Geofiz. Issled., 2006, vol. 5, pp. 32–52.Google Scholar
  2. 2.
    Forsberg, R., Olesen, A.V., and Einarsson, I., Airborne gravimetry for geoid determination with Lacoste Romberg and Chekan gravimeters, Gyroscopy Navig., 2015, vol. 6, no. 3, pp. 265–270. doi 10.1134/S2075108715040069CrossRefGoogle Scholar
  3. 3.
    Glazko, V.V., Sokolov, A.V., and Krasnov, A.A., The results of marine gravimetric survey in the polar latitudes using Chekan-AM and Shel’f-E graviemters, Navig. Gidrogr., 2015, no. 41, pp. 47–51.Google Scholar
  4. 4.
    Ivanov, S.S., Peremennoe gravitatsionnoe pole okeana (Variable Gravity Field of the Ocean), Moscow: Inst. Okeanol. im. P.P. Shirshova Akad. Nauk SSSR, 1987.Google Scholar
  5. 5.
    Koneshov, V.N., Nepoklonov, V.B., and Stolyarov, I.A., Using modern geopotential models in studying vertical deflections in the Arctic, Gyroscopy Navig., 2012a, vol. 3, no. 4, pp. 298–307.CrossRefGoogle Scholar
  6. 6.
    Koneshov, V.N., Nepoklonov, V.B., and Stolyarov, I.A., Study of the anomalous gravity field in the arctic based on modern geopotential models, Izv., Phys. Solid Earth, 2012b, vol. 48, nos. 7–8, pp. 587–593. doi 10.1134/ S1069351312070038CrossRefGoogle Scholar
  7. 7.
    Koneshov, V.N., Nepoklonov, V.B., and Solov’ev, V.N., Comparison of global Earth’s gravity field models with the aerogravimetric data obtained during a transcontinental flight, Gyroscopy Navig., 2014, vol. 5, no. 4, pp. 275–282. doi 10.1134/S2075108714040075CrossRefGoogle Scholar
  8. 8.
    Koneshov, V.N., Nepoklonov, V.B., and Avgustov, L.I., Estimating the navigation informativity of the Earth’s anomalous gravity field, Gyroscopy Navig., 2016a, vol. 7, no. 3, pp. 277–284. doi 10.1134/S2075108716030081CrossRefGoogle Scholar
  9. 9.
    Koneshov, V.N., Nepoklonov, V.B., and Avgustov, L.I., Erratum to: “Estimating the navigation informativity of the Earth’s anomalous gravity field,” Gyroscopy Navig., 2016b, vol. 7, no. 4, p. 360. doi 10.1134/S2075108716050011CrossRefGoogle Scholar
  10. 10.
    Koneshov, V.N., Nepoklonov, V.B., Pogorelov, V.V., Solov’ev, V.N., and Afanas’eva, L.V., Arctic gravity exploration: State of the art and prospects, Izv., Phys. Solid Earth, 2016c, vol. 52, no. 3, pp. 443–451. doi 10.1134/ S1069351316030058CrossRefGoogle Scholar
  11. 11.
    Koneshov, V.N., Klevtsov, V.V., and Solov’ev, V.N., Upgrading the GT-2A aerogravimetric complex for airborne gravity measurements in the Arctic, Izv., Phys. Solid Earth, 2016d, vol. 52, no. 3, pp. 452–459. doi 10.1134/ S106935131603006XCrossRefGoogle Scholar
  12. 12.
    Krasnov, A.A. and Sokolov, A.V., A modern software system of a mobile Chekan-AM gravimeter, Gyroscopy Navig., 2015, vol. 6, no. 4, pp. 278–287. doi 10.1134/ S2075108715040082CrossRefGoogle Scholar
  13. 13.
    Krasnov, A.A., Sokolov, A.V., Evstifeev, M.I., Elinson, L.S., Zheleznyak, L.K., Koneshov, V.N., and Starosel’tseva, I.M., A gravimetric sensor of new generation, Izmer. Tekh., 2014a, no. 9, pp. 12–15.Google Scholar
  14. 14.
    Krasnov, A.A., Sokolov, A.V., and Elinson, L.S., A new air-sea shelf gravimeter of the Chekan series, Gyroscopy Navig., 2014b, vol. 5, no. 1, pp. 131–137. doi 10.1134/S2075108714030067CrossRefGoogle Scholar
  15. 15.
    Krasnov, A.A., Sokolov, A.V., and Elinson, L.S., Operational experience with the Chekan-AM gravimeters, Gyroscopy Navig., 2014c, vol. 5, no. 3, pp. 181–185. doi 10.1134/ S2075108714030079CrossRefGoogle Scholar
  16. 16.
    Peshekhonov, V.G., Stepanov, O.A., Avgustov, L.I., Blazhnov, B.A., Bolotin Yu.V., Vershovskii, A.K., Vitushkin, L.F., Vyaz’min, V.S., Gaivoronskii, S.V., Golovan, A.A., Evstifeev, M.I., Emel’yantsev, G.I., Zheleznyak, L.K., Koneshov, V.N., Krasnov, A.A., et al., Sovremennye metody i sredstva izmereniya parametrov gravitatsionnogo polya Zemli (Modern Methods and Tools for Measuring Parameters of Gravity Field of the Earth), Peshekhonov, V.G., Eds., St. Petersburg: Kontsern TsNII Elektropribor, 2017.Google Scholar
  17. 17.
    Sokolov, A.V., Krasnov, A.A., Elinson, L.S., Vasil’ev, V.A., and Zheleznyak, L.K., Calibration of the Chekan-AM gravimeter by a tilting method, Gyroscopy Navig., 2015, vol. 6, no. 4, pp. 288–293. doi 10.1134/S2075108715040112CrossRefGoogle Scholar
  18. 18.
    Sokolov, A.V., Krasnov, A.A., Koneshov, V.N., and Glazko, V.V., The first high-precision gravity survey in the North Pole region, Izv., Phys. Solid Earth, 2016, vol. 52, no. 2, pp. 254–258. doi 10.1134/S1069351316020129CrossRefGoogle Scholar
  19. 19.
    Sorokin, L.V., Determination of gravity values in the Black Sea, in Doklady sovetskoi delegatsii VII konferentsii Baltiiskoi geodezicheskoi komissii (Reports of the Soviet Delegation on the VII Conference of the Baltic Geodetic Commission), Leningrad: ONTI, 1934, vol. 5, pp. 11–43.Google Scholar
  20. 20.
    Spiridonov, E.A., ATLANTIDA 3.1_2014 software for analysis of earth tides data, Nauka Tekhnol. Razrab., 2014, vol. 93, no. 3, pp. 3–48.Google Scholar
  21. 21.
    Spiridonov, E.A., ATLANTIDA 3.1_2014 software for calculating parameters of the earth tides, State Software Registry Certificate no. 2015619567, 2015.Google Scholar
  22. 22.
    Spiridonov, E.A., Results of comparison of predicted Earth tidal parameters and observational data, Seism. Instrum., 2016a, vol. 52, no. 1, pp. 60–69.CrossRefGoogle Scholar
  23. 23.
    Spiridonov, E.A., How dissipation and selection of the Earth model on the quality of the Earth tidal prediction, Seism. Instrum., 2016b, vol. 52, no. 3, pp. 224–232.CrossRefGoogle Scholar
  24. 24.
    Spiridonov, E.A., Corrections to the Love numbers for the relative and Coriolis accelerations and their latitude dependence, Geofiz. Protsessy Biosfera, 2016c, vol. 15, no. 1, pp. 73–81.Google Scholar
  25. 25.
    Spiridonov, E.A., Latitude dependence of amplitude factor δ for degree 2 tides, Russ. Geol. Geophys., 2016d, vol. 57, no. 4, pp. 629–636. doi 10.1016/j.rgg.2015.08.013CrossRefGoogle Scholar
  26. 26.
    Spiridonov, E.A., Amplitude factors δ and phase shifts of tidal waves for the models of the Earth with ocean, Geofiz. Protsessy Biosfera, 2017, vol. 16, no. 2, pp. 5–54. doi 10.21455/GPB2017.2-1Google Scholar
  27. 27.
    Spiridonov, E.A. and Vinogradova, O.Yu., Comparison of the model oceanic gravimetrical effect with the observations, Izv., Phys. Solid Earth, 2014, vol. 50, no. 1, pp. 118–126. doi 10.1134/S1069351314010078CrossRefGoogle Scholar
  28. 28.
    Spiridonov, E.A. and Vinogradova, O.Yu., The results of integrated modeling of the oceanic gravimetric effect, Seism. Instrum., 2018, vol. 54, no. 1, pp. 43–53. doi 10.3103/S0747923918010097CrossRefGoogle Scholar
  29. 29.
    Spiridonov, E., Vinogradova, O., Boyarskiy, E., and Afanasyeva, L., ATLANTIDA3.1_2014 for WINDOWS: A software for tidal prediction, Bull. Inf. Mar. Terr., 2015, vol. 149, pp. 12 063–12 081.Google Scholar
  30. 30.
    Spiridonov, E.A., Yushkin, V.D., Vinogradova, O.Yu., and Afanasyeva, L.V., The Atlantida 3.1_2014 program for earth tide prediction: New version, Seism. Instrum., 2018, vol. 54, no. 6, pp. 650–661. doi 10.3103/S0747923918060129Google Scholar
  31. 31.
    Vening-Meinesz, F.A., Gravity Expeditions at Sea 1923–1930, vol. I: The Expeditions, the Computations and the Results, Delft: Nederlandse Commissie voor Geodesie 3, 1932.Google Scholar
  32. 32.
    Zheleznyak, L.K., Developments in marine gravimetry at the Institute of Physics of the Earth, Russian Academy of Sciences, Nauka Tekhnol. Ross., 2003, nos. 6–7, pp. 54–56.Google Scholar
  33. 33.
    Zheleznyak, L.K., The accuracy of measurements by the CHEKAN-AM gravity system at sea, Izv., Phys. Solid Earth, 2010, vol. 46, no. 11, pp. 1000–1003.CrossRefGoogle Scholar
  34. 34.
    Zheleznyak, L.K. and Koneshov, V.N., Estimation of errors in satellite altimetry data compared to gravimetric data, Fiz. Zemli, 1995, no. 1, pp. 78–81.Google Scholar
  35. 35.
    Zheleznyak, L.K. and Koneshov, V.N., Studying the gravitational field of the World Ocean, Her. Russ. Acad. Sci., 2007, vol. 77, no. 3, pp. 217–226.CrossRefGoogle Scholar
  36. 36.
    Zheleznyak, L.K., Koneshov, V.N., Popov, E.I., Nesenyuk, L.P., Peshekhonov, V.G., Elinson, L.S., Il’in, V.N., Savel’ev, E.B., Chichinadze, M.V., Blagov, E.V., Bronshtein, I.G., Dobrotvorskii, A.N., Knyazev, Yu.A., and Parusnikov, P.A., Designing and introducing of double-purpose gravimeters for seaborne and airborne measurements, Giroskopiya Navig., 2004, no. 1, pp. 149–152.Google Scholar
  37. 37.
    Zheleznyak, L.K., Krasnov, A.A., and Sokolov, A.V., Effect of the inertial accelerations on the accuracy of the CHEKAN-AM gravimeter, Izv., Phys. Solid Earth, 2010, vol. 46, no. 7, pp. 580–583.CrossRefGoogle Scholar
  38. 38.
    Zheleznyak, L.K., Mikhailov, P.S., and Solov’ev, V.N., Marine gravity measurements without referencing to the coastal base stations, Izv., Phys. Solid Earth, 2014, vol. 50, no. 2, pp. 212–214. doi 10.1134/S1069351314020141CrossRefGoogle Scholar
  39. 39.
    Zheleznyak, L.K., Koneshov, V.N., Krasnov, A.A., Sokolov, A.V., and Elinson, L.S., The results of testing the Chekan gravimeter at the Leningrad gravimetric testing area, Izv., Phys. Solid Earth, 2015a, vol. 51, no. 2, pp. 315–320. doi 10.1134/S106935131502010XCrossRefGoogle Scholar
  40. 40.
    Zheleznyak, L.K. Koneshov, V.N., Mikhailov, P.S., and Solov’ev, V.N., Use of the Earth’s gravitational model in marine gravity measurements, Izv., Phys. Solid Earth, 2015b, vol. 51, no. 4, pp. 559–565. doi 10.7868/ S0002333714020148CrossRefGoogle Scholar
  41. 41.
    Zheleznyak, L.K., Koneshov, V.N., and Mikhailov, P.S., Experimental determination of the vertical gravity gradient below the sea level, Izv., Phys. Solid Earth, 2016, vol. 52, no. 6, pp. 866–868. doi 10.1134/S1069351316060124CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. N. Koneshov
    • 1
  • L. K. Zheleznyak
    • 1
  • V. N. Soloviev
    • 1
  • P. S. Mikhailov
    • 1
    Email author
  1. 1.Schmidt Institute of Physics of the Earth, Russian Academy of SciencesMoscowRussia

Personalised recommendations