Seismic Instruments

, Volume 53, Issue 4, pp 267–279 | Cite as

Earthworm-based automatic system for real-time calculation of local earthquake source parameters

  • A. A. Stepnov
  • A. V. Konovalov
  • A. V. Gavrilov
  • K. A. Manaychev


Experience in introduction of an automatic system of earthquake source parameter calculation based on an existing seismic network is described. Open source software products for automatic seismic data processing are reviewed. Methods for real-time waveform stream processing are discussed in detail. Parameters of some subroutines of the system are described. Information flows and data life cycle in the developed automatic system are outlined. Earthquake location errors in the system are analyzed. The detection capability of seismic networks is evaluated.


automatic system seismic network evaluation of detection and location capability of seismic networks telemetry data stream data life cycle hypocenter local magnitude error analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, R., Automatic phase pickers: Their present use and future prospects, Bull. Seismol. Soc. Am., 1982, vol. 72, no. 6B, pp. S225–S242.Google Scholar
  2. Bath, M., Introduction to Seismology, Basel: Birkhäuser, 1979.CrossRefGoogle Scholar
  3. Bratt, S.R. and Bache, T.C., Locating events with a sparse network of regional arrays, Bull. Seismol. Soc. Am., 1988, vol. 78, no. 2, pp. 780–798.Google Scholar
  4. Earthworm Central. Accessed September 1, 2017.Google Scholar
  5. Earthworm Central, Simplified Flowchart for Binder. binder-flowchart.pdf. Accessed September 1, 2017.Google Scholar
  6. Fasheh, M., OCFS2: The Oracle clustered file system, version 2, in Proceedings of the 2006 Linux Symposium, Ottawa, Canada, 2006, vol. 1, pp. 289–302.Google Scholar
  7. Gavrilov, A.V., Konovalov, A.V., and Nikiforov, S.P., Results from field and stationary tests of the seismic signal recorded delta 03, Seism Instrum., 2011, vol. 47, no. 3, pp. 271–277.CrossRefGoogle Scholar
  8. Geiger, L., Probability method for determination of earthquake epicenters from the arrival times only, Bull. St. Louis Univ., 1912, vol. 8, pp. 60–71.Google Scholar
  9. Geofon Program. Accessed September 1, 2017.Google Scholar
  10. GitHub, ringserver. Accessed September 1, 2017.Google Scholar
  11. Helmholtz-Centre Potsdam, SeisComP User License Agreement. license.pdf. Accessed September 1, 2017.Google Scholar
  12. Hijmans, R.J., Williams, E., and Vennes, C., The Comprehensive K Archive Network, Geosphere: Spherical Trigonometry. index.html. Accessed September 1, 2017.Google Scholar
  13. IRIS, SeedLink. seedlink/. Accessed September 1, 2017.Google Scholar
  14. Institute of Marine Geology and Geophysics, Far East Branch of the Russian Academy of Sciences, Sakhalin Real-time Seismological Service. Accessed September 1, 2017.Google Scholar
  15. Instrumental Software Technologies, Inc., Earthworm Community Trac Wiki. Accessed September 1, 2017.Google Scholar
  16. International Federation for Digital Seismograph Networks, SEED Reference Manual, SEED Format Version 2.4, 2012. SEEDManual_V2.4.pdf.Google Scholar
  17. Klein, F.W., User’s Guide to Hypoinverse-2000, a Fortran Program to Solve for Earthquake Locations and Magnitudes, USGS Open File Report 02–171, 2001.Google Scholar
  18. Konovalov, A.V., Stepnov, A.A., and Patrikeev, V.N., SEISAN software application for developing an automated seismological data analysis workstation, Seism. Instrum., 2012, vol. 48, no. 3, pp. 270–281.CrossRefGoogle Scholar
  19. Konovalov, A.V., Sychev, A.S., A calibration curve of local magnitude and intermagnitude relations for northern Sakhalin, J. Volcanol. Seismol., 2014, vol. 8, no. 6, pp. 390–400.CrossRefGoogle Scholar
  20. Konovalov, A.V., Nagornykh, T.V., and Safonov, D.A., Sovremennye issledovaniya mekhanizmov ochagov zemletryasenii o. Sakhalin (Contemporary Studies of Focal Mechanisms of Earthquakes on Sakhalin Island), Kozhurin, A.I., Ed., Vladivostok: Dal’nauka, 2014.Google Scholar
  21. Laboratory for Atmocpheric Acoustics, RTPD Installation and Users Guide, Version http://l2a.ucsd. edu/local/Manuals/RTPD.pdf. Accessed September 1, 2017.Google Scholar
  22. Lienert, B.R. and Havskov, J., A computer program for locating earthquakes both locally and globally, Seismol. Res. Lett., 1995, vol. 66, no. 5, pp. 26–36.CrossRefGoogle Scholar
  23. Lomax, A., Virieu, J., Volan, P., and Berge-Thierry, C., Probabilistic earthquake location in 3D and layered models, in Advances in Seismic Event Location, vol. 18 of Modern Approaches in Geophysics, Thurber, C.H. and Rabinowitz, N., Eds., Dordrecht: Kluwer, 2000, pp. 101–134.CrossRefGoogle Scholar
  24. Mele, F., Bono, A., Lauciani, V., Mandiello, A., Marcocci, C., Pintore, S., Quintiliani, M., Scognamiglio, L., and Mazza, S., Tuning an Earthworm Phase Picker: Some Considerations on the PICK_EW Parameters, INGV Rapporti Tecnici 164, Rome, 2010.Google Scholar
  25. Olivieri, M. and Clinton, J., An almost fair comparison between Earthworm and SeisComp3, Seismol. Res. Lett., 2012, vol. 83, no. 4, pp. 720–727.CrossRefGoogle Scholar
  26. OOO Ekspas, Baikal-8: Technical Description, Ver. 1.5. manual%201.5.pdf. Accessed September 1, 2017.Google Scholar
  27. Ottemöller, L., Voss, P., and Havskov, J., SEISAN Earthquake Analysis Software for Windows, Solaris, Linux and MacOsX, Univ. Bergen, 2011.Google Scholar
  28. SeisComP3, Documentation of the Archlink. http://www. Accessed September 1, 2017.Google Scholar
  29. SeisComP3, Installation and Requirements. html. Accessed September 1, 2017.Google Scholar
  30. Sorokin, A.A., Korolev, S.P., Polyakov, A.N., Development of information technologies for storage of data of instrumental observation networks of the Far Eastern Branch of the Russian Academy of Sciences, Procedia Comput. Sci., 2015, vol. 66, pp. 584–591.CrossRefGoogle Scholar
  31. Stepnov, A.A., Gavrilov, A.V., Konovalov, A.V., and Ottemöller, L., New architecture of an automated system for acquisition, storage, and processing of seismic data, Seism. Instrum., 2014, no. 50, no. 1, pp. 67–74.CrossRefGoogle Scholar
  32. The Spread Toolkit. Accessed September 1, 2017.Google Scholar
  33. Urabe, T. and Tsukuda, S., WIN–A program on workstation for support of manual phase picking process on seismograms recorded by microearthquake observation network, Progr. Abstr., Seismol. Soc. Jpn., 1992, no. 2, p. 41.Google Scholar
  34. USGS Volcano Hazard Program, SWARM, Seismic Wave Analysis and Real-time Monitor: User manual and reference guide, 2011. doc/swarm_v2.pdf.Google Scholar
  35. USGS Volcano Hazard Program, Winston. http://volcanoes. Accessed September 1, 2017.Google Scholar
  36. Utheim, T., Havskov, J., Ozyazicioglu, M., Rodriguez, J., and Talavera, E., RTQUAKE, a real-time earthquake detection system integrated with SEISAN, Seismol. Res. Lett., 2014, vol. 85, no. 3, pp. 735–742.CrossRefGoogle Scholar
  37. Wald, D.J., Worden, B.C., Quitoriano, V., and Pankow, K.L., ShakeMap Manual: Technical Manual, User’s Guide, and Software Guide, Version 1.0, USGS, 2005. https:// Scholar
  38. Weber, B., Becker, J., Hanka, W., Heinloo, A., Hoffmann,M., Kraft, T., Pahlke, D., Reinhardt, J., Saul, J., and Thoms, H., SeisComP3–automatic and interactive real-time data processing, Geophys. Res. Abstr., 2007, vol. 9, p. 09219.Google Scholar
  39. Wessel, P., Smith, W.H., Scharroo, R., Luis, J., and Wobbe, F., Generic mapping tools: improved version released, EOS, Trans. Am. Geophys. Union, 2013, vol. 94, no. 45, pp. 409–410.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • A. A. Stepnov
    • 1
  • A. V. Konovalov
    • 1
  • A. V. Gavrilov
    • 1
  • K. A. Manaychev
    • 1
  1. 1.Institute of Marine Geology and Geophysics, Far East BranchRussian Academy of SciencesYuzhno-SakhalinskRussia

Personalised recommendations