Seismic Instruments

, Volume 52, Issue 3, pp 195–206 | Cite as

The catastrophic earthquake of April 25, 2015, in Nepal: Analysis of seismological data

  • A. A. Malovichko
  • I. P. Gabsatarova
  • M. V. Kolomiets
  • L. S. Chepkunas


The paper analyzes available seismic data of the Geophysical Survey of the Russian Academy of Sciences on the catastrophic earthquake with Ms = 7.9 occurred in Nepal on April 25, 2015. It is shown that this earthquake (also called Gorkha) in its coseismic stage reflected the dynamic situation in the collision zone between the Indian and Eurasian plates, and occurred in the area of the Main Frontal Thrust in the Himalayas. In the last 15 years, the seismicity of this area has demonstrated the features of strong earthquake preparation. The study results are presented for the early postseismic stage (in the first month after the mainshock). It is found that the pattern of a decrease in aftershock activity is similar to that obtained by Tatevossian and Aptekman (2008) for the world’s earthquakes with M > 8. It is regular in the first 11–16 days and can be described by the Omori law, whereas on 17th day after the mainshock, the exponent characterizing the rate of change in the flow of events becomes to irregular. The spatial and temporal distribution of aftershocks of the 2015 Gorkha earthquake qualitatively and quantitatively indicates the heterogeneity of a seismogenic interface of the Himalayan arc collision zone between the Indian and Eurasian plates.


seismicity Himalayan Seismic Belt destructive earthquake focal mechanism aftershocks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aptekman, Zh.Ya., Belavina, Yu.F., Zakharova, A.I., Zobin, V.M., Kogan, S.Ya., Korchagina, O.A., Moskvina, A.G., Polikarpova, L.A., and Chepkunas, L.S., P-wave spectra in the problem of defining the dynamic parameters of earthquakes: A transition from station to source spectrum and calculation of source dynamics parameters, Vulkanol. Seismol, 1989, no. 2, pp. 66–79.Google Scholar
  2. Bilham, R. and Ambraseys, N., Apparent Himalayan slip deficit from the summation of the seismic moments for Himalayan earthquakes, 1500–2000, Current Sci., 2005, vol. 88, no. 10, pp. 1658–1663.Google Scholar
  3. Di Giacomo, D., Storchak, D.A., Safronova, N., Ozgo, P., Harris, J., Verney, R., and Bondár, I., A new ISC service: The bibliography of seismic events, Seismol. Res. Lett., 2014, vol. 85, no. 2, pp. 354–360.CrossRefGoogle Scholar
  4. Dziewonski, A.M., Chou, T.-A., and Woodhouse, J.H., Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res., 1981, vol. 86, pp. 2825–2852.CrossRefGoogle Scholar
  5. Ekström, G., Nettles, M., and Dziewonski, A.M., The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. Inter., 2012, vols. 200–201, pp. 1–9.CrossRefGoogle Scholar
  6. Gorbunova, I.V., Determination of source dimensions and rupture direction from the wave pattern in a seismogram, Dokl. Akad. Nauk SSSR, 1981, vol. 261, no. 4, pp. 836–839.Google Scholar
  7. Gorbunova, I.V., Boichuk, A.N., Dotsev, N.T., Kal’met’eva, Z.A., Kapitanova, T.A., Kuchai, O.A., Mikhailova, N.N., Pustovitenko, B.G., Simbirtseva, I.G., and Tovmasyan, A.K., Interpretatsiya ochagovykh voln na zapisyakh zemletryasenii (Interpretation of Source Waves in Earthquake Records), Moscow: Geofiz. Kom. Prezidente Ross. Akad. Nauk, 1992.Google Scholar
  8. Jain, A.K., When did India–Azia collide and make the Himalaya?, Current Sci., 2014, vol. 106, no. 2, pp. 254–266.Google Scholar
  9. Kanamori, H. and Anderson, D.L., Theoretical basis of some empirical relations in seismology, Bull. Seismol. Soc. Am., 1975, vol. 65, pp. 1073–1095.Google Scholar
  10. Kayal, J.R., Seismotectonics of the great and large earthquakes in Himalaya, Current Sci., 2014, vol. 106, no. 2, pp. 188–197.Google Scholar
  11. Kennett, B.L.N., Engdahl, E.R., and Buland, R., Constraints on seismic velocities in the Earth from travel times, Geophys. J. Int., 1995, vol. 122, pp. 108–124.CrossRefGoogle Scholar
  12. Kumar, M.R., Hazarika, P., Prasad, G.S., Singh, A., and Saha, S., Tectonic implications of the September 2011 Sikkim earthquake, Current Sci., 2012, vol. 102, no. 5, pp. 788–792.Google Scholar
  13. Lander, A.V., Opisanie i instruktsiya dlya pol’zovatelya kompleksa programm FA (raschet i graficheskoe predstavlenie mekhanizmov ochagov zemletryasenii po znakam pervykh vstuplenii R-voln) (Description and User Manual of the FAS oftware Complex: Calculation and Graphical Representation of Focal Mechanisms of Earthquakes from Signs of Rwaves First Arrivals), Moscow, 2006.Google Scholar
  14. Magnitude 7.8 NEPAL Saturday, April 25, 2015 at 06:11:26 UTC, Teachable Moments, IRIS Education & Public Outreach, The University of Portland, 2015. http://wwwirisedu/hq/retm/Google Scholar
  15. Malovichko, A.A., Starovoit, O.E., Gabsatarova, I.P., Kolomiets, M.V., and Chepkunas, L.S., Catastrophic Tohoku earthquake of March 11, 2011, in Japan, Seism. Instrum., 2012, vol. 48, no. 1, pp. 1–9.Google Scholar
  16. Mikheeva, A.V., Dyad’kov, P.G., and Marchuk, A.G., The GIS-EEDB geoinformation system and methods of spatiotemporal analysis of seismological data, Geoinformatika, 2013, no. 2, pp. 58–65.Google Scholar
  17. Mishra, O.P., Intricacies of the Himalayan seismotectonics and seismogenesis, need for integrated research, Current Sci., 2014, vol. 106, no. 2, pp. 176–187.Google Scholar
  18. Monsalve, G., Sheeha, A.F., Schulte-Pelkum, V., Rajaure, S., Pandey, M.R., and Wu, F., Seismicity and 1-D velocity structure of the Himalayan collision zone: Results from the Himalayan Nepal Tibet Seismic Experiment (HIMNT), J. Geophys. Res.: Solid Earth, 2006, vol. 111, B10301.CrossRefGoogle Scholar
  19. Negishi, H., Mogi, J., Sato, T., Singh, R., Kumar, S., and Hirata, N., Size and orientation of the fault plane for 2001 Gujarat from aftershock observations: A high stress drop event, Geophys. Res. Lett., 2002, vol. 29, no. 20, pp. 101–104.CrossRefGoogle Scholar
  20. Omori, F., Investigation of aftershocks, Rep. Earthquake Invest. Comm., 1896, no. 2, pp. 103–139.Google Scholar
  21. On-Line Bulletin, International Seismological Centre, Thatcham, United Kingdom. http://wwwiscacuk/iscbulletin/search/bulletin/. Accessed May 30, 2015.Google Scholar
  22. On-line Event Bibliography, International Seismological Centre, Thatcham, United Kingdom, 2015. http://www.iscacuk/eventbibliography.Google Scholar
  23. Philip, G., Suresh, N., and Bhakuni, S.S., Active tectonics in the northwestern outer Himalaya: evidence of large-magnitude paleoearthquakes in Pinjaur Dun and the Frontal Himalaya, Current Sci., 2014, vol. 106, no. 2, pp. 211–222.Google Scholar
  24. Riznichenko, Yu.V., Source size for a crustal earthquake and seismic moment, in Issledovaniya po fizike zemletryaseniya (Studies in Earthquake Physics), Moscow: Nauka, 1976, pp. 9–27.Google Scholar
  25. Shah, A.A., Two great historical earthquake ruptures revealed in Nepal, Current Sci., 2013, vol. 104, no. 8, p. 994.Google Scholar
  26. Sobolev, G.A., Osnovy prognoza zemletryasenii (Fundamentals of Earthquake Prediction), Moscow: Nauka, 1993.Google Scholar
  27. Tatevossian, R.E. and Aptekman, Zh.Ya., Aftershock sequences of the strongest earthquakes of the world: Stages of development, Izv., Phys. Solid Earth, 2008, vol. 44, no. 12, pp. 945–964.CrossRefGoogle Scholar
  28. Zakharova, A.I., Chepkunas, L.S., and Malyanova, L.S., Source parameters of the strong earthquakes of the world, in Zemletryaseniya Severnoi Evrazii v 2001 godu (Earthquakes of Northern Eurasia in 2001), Obninsk: GS RAN, 2007, pp. 281–286.Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • A. A. Malovichko
    • 1
  • I. P. Gabsatarova
    • 1
  • M. V. Kolomiets
    • 1
  • L. S. Chepkunas
    • 1
  1. 1.Geophysical Survey of the Russian Academy of SciencesObninskRussia

Personalised recommendations