Seismic Instruments

, Volume 45, Issue 1, pp 21–26 | Cite as

Geophysical radar for the observation of ionized clouds in the atmosphere above the earthquake preparation region

  • A. P. Slivinsky
  • A. S. Terekhov
  • V. A. Liperovsky


The authors propose to use a modified geophysical radiolocator for the detection and investigation of local quasi-plasma anomalies in the atmosphere. This radiolocator should control the large region of the atmosphere, filled with scattering objects, connected with the precipitation of radioactive substances. Such phenomena could arise in connection with earthquakes and could also be caused by technogenic origins. Contrary to standard radar, the noise of scattering objects is the aim of the analysis of geophysical radar. The discussion of technical characteristics of such radar is presented.

Key words

atmosphere Radon charged aerosols quasi-plasma anomalies radiolocation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Voinov, V.V., Gufel’d, I.L., Kruglikov, V.V., Ledovskii, I.S., Marenko, V.F., Miranyan, F.P., Panadzhyan, V.G., and Yampol’skii, V.S., Effects in Ionosphere and Atmosphere Before Spitak Earthquake December the 7th. 1988, Izv. AN USSR. Ser. Fizika Zemli, 1992, no. 3, pp. 98–101.Google Scholar
  2. Voitov, G.I. and Dobrovol’skii, I.P., Chemical and Isotopic-Carbon Instabilities of Natural Gas Flows in Seismically Active Regions, Fizika Zemli, 1994, no. 3, pp. 20–31.Google Scholar
  3. Gal’perin, S.M., Gonchar, A.F., Egorov, V.P., and Stepanenko, V.D., Radar Detection of Electric Storm Clouds, Proc. I-st. All-Union Symp. on atmospheric electricity, Leningrad: Gidrometeoizdat, 1976, pp. 170–177.Google Scholar
  4. Doviak, R.J. and Zrnic, D.S., Doppler Radar and Weather Observation, Academic Press, 1984.Google Scholar
  5. Kalinin, A.I., Raschet trass radioreleinykh linii (Calculation of Line-of-Sight Paths), Moscow: Svyaz’, 1964.Google Scholar
  6. Liperovsky, V.A., Mikhailin, V.V., Shevtsov, B.M., Davydov, V.F., Bogdanov, V.V., and Umarkhodzhaev, R.M., About Infrared Radiation in Atmosphere before the Earthquakes, Geofiz. issled., 2007, issue 8, pp. 51–68.Google Scholar
  7. Rytov, S.M., Kravtsov, Yu.A., and Tatarsky, V.I., Vvedenie v statisticheskuyu radiofiziku. Ch. 2. Sluchainye polya (Introduction into Statistic Radiophysics. Part. 2. Random Fields), Moscow: Nauka, 1978.Google Scholar
  8. Slivinsky, A.P. and Terekhov, A.S., The Way to Use the Stations of Back-Inclined Exploration for Environment State Monitoring, Nauchnye trudy Natsional’nogo universiteta “Kievo-Mogilyanskaya akademiya,“ Ser. Technog. bezopasnost’, 2006, vol. 49,issue 36, pp. 134–140.Google Scholar
  9. Skolnik, M., Ed. Radiolocation Handbook. Moscow: Sov. radio, 1979, vol. 3.Google Scholar
  10. Stepanenko, V.D. and Gal’perin, S.M., Radiotekhnicheskie metody issledovaniya groz (Electric Storms Investigation by Radio-Technical Methods), Leningrad: Gidrometeoizdat, 1983.Google Scholar
  11. Shakina, N.P. and Kuznetsova, I.N., Beta Activity Increasing in Near-Ground Air Layer Caused by Stratospheric Outbreaks, Dokl. RAN, 1997, vol. 356, no. 3, pp. 390–392.Google Scholar
  12. Shul’ga, A.V., Bushuev, F.I., Kalyuzhnyi, N.A., Obraztsov, Yu.M., Slivinsky, A.P., and Terekhov, A.S., On the Possibility of Short-Termed Prediction of Earthquakes According to Signaling Information that Comes from On-Ground SVD Radio Transmitters of GPS and from Geophysical Radar, International Conference “Enlargement of Collaboration in Ground-Based Astronomical Research in SEE Countries. Studies of the Near-Earth and Small Bodies of the Solar System”, Nikolaev, 2006, p. 95.Google Scholar
  13. Yuman, M., Molniya (Lightning), Moscow: Mir, 1972.Google Scholar
  14. Bushuev, F.I., Obraztsov, Y.M., and Slivinsky, A.P., Influence Strong Magnetic Storm on Parameters of Work of Turbogenerator the YU Atomic Power Station, International Scientific-Practical Conference “Ecological Safety of Objects of Economic Activities,” Nikolaev, 2–4 June, 2004.Google Scholar
  15. Dawson, G.A., Radar as a Diagnostic Tool for Lightning, J. Geophys. Res., 1972, pp. 4518–4528.Google Scholar
  16. Holmes, C.R., Szymanski, E.W., Szymanski, S.J., and Moore, C.B., Radar and Acoustic Study of Lightning, J. Geophys. Res., 1980, vol. 85, pp. 7517–7532.CrossRefGoogle Scholar
  17. Liperovsky, V.A., Meister, C.V., Liperovskaya, E.V., Davidov, V.F., and Bogdanov, V.V., On the Possible Influence of Radon and Aerosol Injection on the Atmosphere and Ionosphere before Earthquakes, Nat. Haz. Earth Syst. Sci., 2005, vol. 5, pp. 7517–7532.Google Scholar
  18. Miles, V.G., Radar Echoes Associated with Lightning, Mon. Weather Rew., 1953, vol. 102, pp. 476–488.Google Scholar
  19. Pulinents, S.A., Boyarchuk, K.A., Hegai, V.V., Kim, V.P., and Lomonosov, A.M., Quasielectrostatic Model of Atmosphere-Thermosphere-Ionosphere Coupling, Adv. Space Res., 2000, vol. 26, no. 8, pp. 1209–1218.CrossRefGoogle Scholar
  20. Pulinets, S.A., Ouzounov, D., Karelin, A.V., Boyarchuk, K.A., and Pokhmelnykh, L.A., The Physical Nature of the Thermal Anomalies Observed before Strong Earthquakes, Phys. Chem. Earth, 2006, vol. 31, pp. 143–153.Google Scholar

Copyright information

© Allerton Press, Inc. 2009

Authors and Affiliations

  • A. P. Slivinsky
    • 1
    • 2
  • A. S. Terekhov
    • 3
  • V. A. Liperovsky
    • 4
  1. 1.Nikolaev Astronomical Observatory Research InstituteNikolaevUkraine
  2. 2.Ukrainian Radio Technical InstituteNikolaevUkraine
  3. 3.Nikolaev Science and Technology Center of the Academy of Sciences of Applied Radio-ElectronicsNikolaevUkraine
  4. 4.Shmidt Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia

Personalised recommendations