Radioelectronics and Communications Systems

, Volume 62, Issue 3, pp 127–133 | Cite as

EHF Band Linear Antenna Array Based on Surface Wave Transformation

  • A. V. HnatovskyiEmail author
  • S. A. ProvalovEmail author
  • G. I. KhlopovEmail author


The experience of using of experimental samples of diffraction radiation antennas shows the need to expand the list of options and modifications of the technical solutions for such antennas. One of variants is the modification of a linear dielectric waveguide for rigidly fixation of the dielectric rod. H-shaped surface-wave waveguides in the form of combination of dielectric rod and rigid metal elements have been proposed for a basic element of diffraction radiation antennas designed for operation in conditions of increased mechanical loads and vibrations at frequencies above 80 GHz. The results of experimental studies of the near-field distribution, radiation patterns, gain and energy losses of the antenna are presented. The obtained results show the effectiveness of the implemented constructive approach. The configuration of the linear antenna grating of diffraction radiation with a modified dielectric waveguide is proposed, which can be applied for the development of scanning antennas in the 80–100 GHz frequency range.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. I. Voskresenskii (ed.), Microwave Antennas and Devices [in Russian] (Radio i Svyaz’, Moscow, 1981).Google Scholar
  2. 2.
    S. D. Andrenko, Yu. B. Sidorenko, V. P. Shestopalov, “On the issue of the surface wave-to-spatial mode transformation,” DAN USSR, No. 12, 156 (1976).Google Scholar
  3. 3.
    S. D. Andrenko, N. D. Devyatkov, V. P. Shestopalov, “Millimeter band arrays,” DAN SSSR 240, No. 6, 1340 (1978).Google Scholar
  4. 4.
    S. Sautbekov, K. Sirenko, Yu. Sirenko, A. Yevdokymov, “Diffraction radiation effects: a theoretical and experimental study,” IEEE Antennas Propag. Mag. 57, No. 5, 73 (2015). DOI: Scholar
  5. 5.
    O. P. Kusaykin, P. N. Melezhik, A. E. Poyedinchuk, S. A. Provalov, D. G. Seleznyov, “Surface and leaky waves of a planar dielectric waveguide with a diffraction grating,” IET Microwaves, Antennas & Propag. 10, No. 1, 61 (2016). DOI: Scholar
  6. 6.
    A. A. Kirilenko, S. O. Steshenko, “The accurate two-dimensional model of the effect of the surface waves transformation into the spatial modes,” Telecom. Radio Eng. 65, No. 16–20, 1765 (2006). DOI: Scholar
  7. 7.
    A. V. Ostankov, S. A. Antipov, K. A. Razinkin, “Optimization of directional and energetic properties of diffraction antenna,” Global J. Pure Appl. Math. 12, No. 4, 3845 (2016). URI: Scholar
  8. 8.
    P. N. Melezhik, V. B. Razskazovskiy, N. G. Reznichenko, V. A. Zuykov, S. D. Andrenko, Yu. V. Sidorenko, S. A. Provalov, A. V. Varavin, L. S. Usov, V. M. Chmil, Yu. N. Mus’kin, “Semiconductor coherent Ka-band radar for airport surface traffic monitoring,” Nauka Innov. 4, No. 3, 5 (2008). DOI: Scholar
  9. 9.
    P. N. Melezhik, Yu. B. Sidorenko, S. A. Provalov, S. D. Andrenko, S. A. Shilo, “Planar antenna with diffraction radiation for radar complex of millimeter band,” Radioelectron. Commun. Syst. 53, No. 5, 233 (2010). DOI: Scholar
  10. 10.
    A. V. Hnatovskyi, S. A. Provalov, “Properties of combined gratings in diffraction radiation antennas,” Telecom. Radio Eng. 74, No. 3, 189 (2015). DOI: Scholar
  11. 11.
    A. A. Vertiy, Yu. K. Sirenko, A. Pavlyuchenko, A. Poyedinchuk, A. Sabyrov, S. S. Sautbekov, N. P. Yashina, “Surface-to-spatial mode conversion by a convex cylindrical diffraction grating: an experimental study,” Telecom. Radio Eng. 75, No. 4, 297 (2016). DOI: Scholar
  12. 12.
    N. Burambayeva, V. Naumenko, S. S. Sautbekov, Yu. K. Sirenko, A. A. Vertiy, “Modeling and analysis of a fast-scanning diffraction radiation antenna,” Telecom. Radio Eng. 75, No. 3, 189 (2016). DOI: Scholar
  13. 13.
    M. Cohn, “Propagation in a dielectric-loaded parallel plane waveguide,” IRE Trans. Microwave Theory Tech. 7, No. 2, 202 (1959). DOI: Scholar
  14. 14.
    A. Sanchez, A. A. Oliner, “A new leaky waveguide for millimeter waves using nonradiative dielectric (NRD) waveguide — Part I: Accurate theory,” IEEE Trans. Microwave Theory Tech. 35, No. 8, 737 (1987). DOI: Scholar
  15. 15.
    H. Qing, A. A. Oliner, A. Sanchez, “A new leaky waveguide for millimeter waves using nonradiative dielectric (NRD) waveguide — Part II: Comparison with experiments,” IEEE Trans. Microwave Theory Tech. 35, No. 8, 748 (1987). DOI: Scholar
  16. 16.
    J. Attari, H. Boutayeb, K. Wu, “A simplified implementation of substrate integrated non-radiative dielectric waveguide at millimeter-wave frequencies,” PIER C 55, 83 (2014). DOI: Scholar
  17. 17.
    L. Latrach, N. Rihem, H. Hanen, A. Gharsallah, “Parametric and comparative studies of leaky wave image NRDG antenna designed with the ordinary single-layer and the double-layers rectangular image NRD guide,” Int. J. Commun. Antenna Propag. 6, No. 2, 108 (2016). DOI: Scholar
  18. 18.
    E. M. Guttsait, “Mode types in the H-shaped metal-dielectric waveguide,” Radiotekh. Elektron., No. 2, 310 (1962).Google Scholar
  19. 19.
    V. P. Shestopalov, L. N. Litvinenko, S. A. Masalov, V. G. Sologub, Wave Diffraction on Grating Arrays [in Russian] (Izdat. Kharkiv University, Kharkov, 1973).Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of UkraineKharkivUkraine

Personalised recommendations