Advertisement

Radioelectronics and Communications Systems

, Volume 62, Issue 3, pp 109–118 | Cite as

Algorithm for Transforming Antenna Electromagnetic Near-Field Measured on Spherical Surface into Far-Field Based on Direct Calculation of Stratton and Chu Formulas

  • N. V. AnyutinEmail author
  • K. I. KurbatovEmail author
  • I. M. MalayEmail author
  • M. A. OzerovEmail author
Article
  • 4 Downloads

Abstract

This study examines the possibility of direct calculation of vector forms of Kirchhoff’s integral in algorithms of electromagnetic near-field to far-field transformation of antenna harmonic radiation. A simple algorithm based on the integral derived from the Stratton and Chu formulas is proposed for the spherical scanning scheme of electromagnetic near-field. Method errors of the proposed algorithm stipulated by the assumptions made in the process of its derivation are investigated by mathematical simulation. The total error is estimated in experiments on reconstruction of antenna amplitude radiation patterns. For comparison, the results of the classical algorithm performance based on electric field expansion in terms of spherical modes are presented in all experiments. It has been shown that the accuracy of the proposed algorithm in comparison with the classical algorithm is not inferior, the programming complexity is lower, while the execution speed is higher on condition of the reconstruction of radiation pattern only in principal sections.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Potekhin, Certain Problems of Electromagnetic Wave Diffraction [in Russian] (Sov. Radio, Moscow, 1948).Google Scholar
  2. 2.
    A. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans. Antennas Propag. 34, No. 1, 30 (1986). DOI:  https://doi.org/10.1109/TAP.1986.1143727.CrossRefGoogle Scholar
  3. 3.
    B. Boesman, D. Pissoort, G. Gielen, G. A. E. Vandenbosch, “Fast and efficient near-field to near-field and near-field to far-field transformation based on the spherical wave expansion,” Proc. of IEEE Int. Symp. on Electromagnetic Compatibility, EMC, 16–22 Aug. 2015, Dresden, Germany (IEEE, 2015), pp. 529–534. DOI:  https://doi.org/10.1109/ISEMC.2015.7256218.Google Scholar
  4. 4.
    Francesco D’Agostino, Flaminio Ferrara, Claudio Gennarelli, Rocco Guerriero, Massimo Migliozzi, “Two effective approaches to correct the positioning errors in a spherical near-field-far-field transformation,” Electromagnetics 36, No. 2, 78 (2016). DOI:  https://doi.org/10.1080/02726343.2016.1136018.CrossRefGoogle Scholar
  5. 5.
    Ole Neitz, Raimund A. M. Mauermayer, Yvonne Weitsch, Thomas F. Eibert, “A propagating plane-wave-based near-field transmission equation for antenna gain determination from irregular measurement samples,” IEEE Trans. Antennas Propag. 65, No. 8, 4230 (2017). DOI:  https://doi.org/10.1109/TAP.2017.2712180.CrossRefGoogle Scholar
  6. 6.
    R. Cornelius, D. Heberling, “Spherical wave expansion with arbitrary origin for near-field antenna measurements,” IEEE Trans. Antennas Propag. 65, No. 8, 4385 (2017). DOI:  https://doi.org/10.1109/TAP.2017.2708099.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    R. A. M. Mauermayer, T. F. Eibert, “Spherical field transformation above perfectly electrically conducting ground planes,” IEEE Trans. Antennas Propag. 66, No. 3, 1465 (2018). DOI:  https://doi.org/10.1109/TAP.2018.2794406.CrossRefGoogle Scholar
  8. 8.
    G. D’elia, G. Leone, R. Pierri, G. Schirinzi, “New method of far-field reconstruction from Fresnel field,” Electron. Lett. 20, No. 8, 342 (1984). DOI:  https://doi.org/10.1049/el:19840232.CrossRefGoogle Scholar
  9. 9.
    P. Petre, T. K. Sarkar, “A planar near-field to far-field transformation using an equivalent magnetic current approach,” IEEE Antennas Propag. Soc. Int. Symp. Dig., 18–25 Jul. 1992, Chicago, USA (IEEE, 1992), pp. 1534–1537. DOI:  https://doi.org/10.1109/APS.1992.221746.Google Scholar
  10. 10.
    Ryo Yamaguchi, Yasuko Kimura, Kazuhiro Komiya, Keizo Cho, “A far-field measurement method for large size antenna by using synthetic aperture antenna,” Proc. of 3rd European Conf. on Antennas and Propagation, 23–27 Mar. 2009, Berlin, Germany (IEEE, 2009), pp. 1730–1733. URI: https://ieeexplore.ieee.org/document/5067950.Google Scholar
  11. 11.
    J. L. A. Quijano, G. Vecchi, “Field and source equivalence in source reconstruction on 3D surfaces,” PIER 103, 67 (2010). DOI:  https://doi.org/10.2528/PIER10030309.CrossRefGoogle Scholar
  12. 12.
    Yu. V. Krivosheev, A. V. Shishlov, A. K. Tobolev, I. L. Vilenko, “Fresnel field to far field transformation using sparse field samples,” Proc. of Int. Conf. on Mathematical Methods in Electromagnetic Theory, 28–30 Aug. 2012, Kyiv, Ukraine (IEEE, 2012), pp. 237–242. DOI:  https://doi.org/10.1109/MMET.2012.6331237.Google Scholar
  13. 13.
    T. F. Eibert, E. Kilic, C. Lopez, R. A. M. Mauermayer, O. Neitz, G. Schnattinger, “Electromagnetic field transformations for measurements and simulations,” PIER 151, 127 (2015). DOI:  https://doi.org/10.2528/PIER14121105.CrossRefGoogle Scholar
  14. 14.
    T. F. Eibert, D. Vojvodić, T. B. Hansen, “Fast inverse equivalent source solutions with directive sources,” IEEE Trans. Antennas Propag. 64, No. 11, 4713 (2016). DOI:  https://doi.org/10.1109/TAP.2016.2606405.CrossRefGoogle Scholar
  15. 15.
    A. Paulus, J. Knapp, T. F. Eibert, “Phaseless near-field far-field transformation utilizing combinations of probe signals,” IEEE Trans. Antennas Propag. 65, No. 10, 5492 (2017). DOI:  https://doi.org/10.1109/TAP.2017.2735463.CrossRefGoogle Scholar
  16. 16.
    C.-T. Tai, Dyadic Green Functions in Electromagnetic Theory (IEEE, 1994).zbMATHGoogle Scholar
  17. 17.
    L. D. Bakhrakh, Yu. A. Kolosov, and A. P. Kurochkin, “Determination of antenna far-field from the values of near-field,” Antenny, No. 24, 3 (1976).Google Scholar
  18. 18.
    S. Silver, Microwave Antenna Theory and Design, Book 19 (IET, 1984). DOI:  https://doi.org/10.1049/PBEW019E.CrossRefGoogle Scholar
  19. 19.
    J. Brown, “A theoretical analysis of some errors in aerial measurements,” Proc. IEE — Part C: Monographs 105, No. 8, 343 (1958). DOI:  https://doi.org/10.1049/pi-c.1958.0044.Google Scholar
  20. 20.
    Jeong-Seok Lee, Tae-Lim Song, Jin-Kyoung Du, Tae-Wan Koo, Jong-Gwan Yook, “A study on near-field to far-field transformation using Stratton-Chu formula,” J. Korean Institute Electromagnetic Eng. Sci. 24, No. 3, 316 (2013). DOI:  https://doi.org/10.5515/KJKIEES.2013.24.3.316.CrossRefGoogle Scholar
  21. 21.
    Yu Ding, Yang Lin, Fu De-Min, Liu Qi-Zhong, “Analysis and simulation of system phase errors in planar near-field measurements on ultra-low sidelobe antennas,” Proc. of IEEE Int. Conf. on Ultra-Wideband, 20–23 Sept. 2010, Nanjing, China (IEEE, 2010), vol. 1, pp. 1–4. DOI:  https://doi.org/10.1109/ICUWB.2010.5614371.Google Scholar
  22. 22.
  23. 23.
    W. C. Gibson, The Method of Moments in Electromagnetics, 2nd ed. (CRC Press, 2014). URI: https://www.crcpress.com/The-Method-of-Moments-in-Electromagnetics/Gibson/p/book/9781482235791.CrossRefGoogle Scholar
  24. 24.
    L. D. Bakhrakh, S. D. Kremenetskii, A. P. Kurochkin, et al., Methods of Parametric Measurements of Radiating System in Near-Field [in Russian] (Nauka, Leningrad, 1985).Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.All-Russia Research Institute of Physicotechnical and Radio Measurements (VNIIFTRI)MendeleevoRussia

Personalised recommendations