Advertisement

Radioelectronics and Communications Systems

, Volume 62, Issue 1, pp 34–41 | Cite as

Parametric Spectral Analysis of Noisy Signals with Unimodal Spectrum

  • V. G. AndrejevEmail author
  • Ngoc L. Tran
  • Tien P. Nguyen
Article
  • 3 Downloads

Abstract

The article proposes a method for the coefficients reconstruction of a discrete autocorrelation function of random signals with a unimodal power spectral density to construct their parametric models. The method is based on finding the optimal values of the relative width ΔFT and the weighting factor α ∈ [0; 1] of the spectral mode, which characterizes the share of the Gaussian and resonant components in the spectrum envelope. The proposed method makes it possible to reduce by 1.5–4 times the discrepancy between the control and estimated spectra in comparison with the known approaches to parametric spectral analysis. An increase in the adequacy of spectral estimation makes it possible to reduce the length Mof the analyzed time sample by a factor of 2.3–4 times, while maintaining the accuracy of the spectral analysis achieved by other known parametric methods. Winnings are achieved by using a priori information about the spectral properties of the analyzed process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Lawrence Marple, Jr. Digital Spectral Analysis with Applications (Prentice–Hall, Englewood Cliffs, N.J., 1987).Google Scholar
  2. 2.
    V. G. Andrejev, “Optimization of autoregressive models of interfering radio–reflections,” Radioelectron. Commun. Syst. 51, No. 7, 377 (2008). DOI:  https://doi.org/10.3103/S0735272708070042.CrossRefGoogle Scholar
  3. 3.
    D. M. Piza, T. I. Bugrova, V. N. Lavrentiev, D. S. Semenov, “Method of forming classified training sample in case of spacial signal processing under influence of combined interference,” Radioelectron. Commun. Syst. 61, No. 7, 325 (2018). DOI:  https://doi.org/10.3103/S0735272718070051.CrossRefGoogle Scholar
  4. 4.
    V. G. Andrejev, N. L. Tran, V. A. Belokurov, “Parametric spectral analysis for noisy signals with Gaussian spectrum,” Vestnik of Ryazan State Radio Engineering University, No. 55, 16 (2016). DOI:  https://doi.org/10.21667/1995-4565-2016-55-1-16-21.CrossRefGoogle Scholar
  5. 5.
    S. M. Kay, S. L. Marple Jr., “Spectrum analysis–A modern perspective,” Proc. IEEE 69, No. 11, 1380 (1981). DOI:  https://doi.org/10.1109/PROC.1981.12184.CrossRefGoogle Scholar
  6. 6.
    V. G. Andreyev, T. P. Nguyen, “Cardiosignals processing with clutter and noise as background,” Vestnik of Ryazan State Radio Engineering University, No. 48, 60 (2014). URI: https://elibrary.ru/item.asp?id=21724317.Google Scholar
  7. 7.
    D. I. Lekhovytskiy, “Adaptive lattice filters for systems of space–time processing of non–stationary Gaussian processes,” Radioelectron. Commun. Syst. 61, No. 11, 477 (2018). DOI:  https://doi.org/10.3103/S0735272718110018.CrossRefGoogle Scholar
  8. 8.
    V. A. Dvinskikh, K. A. Razumikhin, “Spectral analysis of digital quasiperiodic signals,” Radioelectron. Commun. Syst. 48, No. 8, 14 (2005). URI: http://radioelektronika.org/article/view/S0735272705080030.Google Scholar
  9. 9.
    K. V. Bisina, Maleeha Abdul Azeez, “Optimized estimation of power spectral density,” Proc. of Int. Conf. on Intelligent Computing and Control Systems, ICICCS, 15–16 Jun. 2017, Madurai, India (IEEE, 2017). DOI:  https://doi.org/10.1109/ICCONS.2017.8250588.Google Scholar
  10. 10.
    V. M. Pukhova, T. V. Kustov, G. Ferrini, “Time–frequency analysis of non–stationary signals,” Proc. of IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering, EIConRus, 29 Jan.–1 Feb. 2018, Moscow, Russia (IEEE, 2018). DOI:  https://doi.org/10.1109/EIConRus.2018.8317292.Google Scholar
  11. 11.
    P. A. Bakulev, V. I. Koshelev, V. G. Andrejev, “Optimizing of ARMA using echo modeling,” Radioelectron. Commun. Syst. 37, No. 9, 38 (1994).Google Scholar
  12. 12.
    V. G. Andreyev, N. L. Tran, “Synthesis of modified overdetermined autoregression model of random process in short sample,” Vestnik of Ryazan State Radio Engineering University, No. 54, 45 (2015). URI: https://elibrary.ru/item.asp?id=25588818.Google Scholar
  13. 13.
    H. Akaike, “Power spectrum estimation through autoregressive model fitting,” Ann. Inst. Stat. Math. 21, 407 (1969). DOI:  https://doi.org/10.1007/BF02532269.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    V. I. Koshelev, ARMA Models of Random Processes. Applied Problems of Synthesis and Optimization [in Russian] (Radio i Svyaz’, Moscow, 2002).Google Scholar
  15. 15.
    V. G. Andrejev, “Optimization of autoregressive models of radio reflections,” Vestnik of Ryazan State Radio Engineering University, No. 35, 12 (2011). URI: https://elibrary.ru/item.asp?id=15617928.Google Scholar
  16. 16.
    V. G. Andrejev, Sh. V. Nguyen, “Parametrical modeling of the correlated radio–reflections for the echo–signals processing efficiency analysis,” Vestnik of Ryazan State Radio Engineering University, No. 18, 40 (2006). URI: https://elibrary.ru/item.asp?id=11743408.Google Scholar
  17. 17.
    V. I. Koshelev, V. G. Andrejev, “Synthesis of ARMA–models of echo signals,” Radioelectron. Commun. Syst. 36, No. 7, 8 (1993).Google Scholar
  18. 18.
    Peter B. Tuuk, S. Lawrence Marple, “Compressed sensing radar amid noise and clutter using interference covariance information,” IEEE Trans. Aerospace Electronic Syst. 50, No. 2, 887 (Apr 2014). DOI:  https://doi.org/10.1109/TAES.2014.120523.Google Scholar
  19. 19.
    V. G. Andrejev, Sh. V. Nguen, “Optimization of filters for simulation of interfering radio reflections in the investigation of systems of echo–signal primary processing,” Radioelectron. Commun. Syst. 49, No. 10, 47 (2006). URI: http://radioelektronika.org/article/view/S0735272706100074.Google Scholar
  20. 20.
    V. G. Andrejev, T. P. Nguyen, “Adaptive processing of signals on a background of clutter and noise,” Radioelectron. Commun. Syst. 58, No. 2, 85 (2015). DOI:  https://doi.org/10.3103/S0735272715020053.CrossRefGoogle Scholar
  21. 21.
    A. G. Gorelik, S. F. Kolomiets, P. V. Kupriyanov, “Scattered spectrum shape as a new information source about scattering medium characteristics and dynamic processes involved,” Civil Aviation High Technologies. Radiophisics and Electronics Series, No. 176, 18 (2012).Google Scholar
  22. 22.
    S. F. Kolomiets, “Interpretation of the Z–R ratio in rains at finite periods of measurement time, taking into account the Mie scattering conditions,” Achievements of Modern Radioelectronics, No. 12, 51 (2007). URI: http://www.radiotec.ru/article/2154.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • V. G. Andrejev
    • 1
    Email author
  • Ngoc L. Tran
    • 1
  • Tien P. Nguyen
    • 2
  1. 1.Ryazan State Radio Engineering UniversityRyazanRussia
  2. 2.Le Quy Don Technical UniversityHanoiVietnam

Personalised recommendations