Radioelectronics and Communications Systems

, Volume 61, Issue 11, pp 515–521 | Cite as

Calibration of Phase Shifters on Basis of Vector-Sum Signals

  • E. V. Balashov
  • A. S. Korotkov
  • I. A. Rumyancev


Attenuators and phase shifters which are the circuits for amplitude-phase distribution control are key elements of antenna arrays. Dispersion of technology parameters results in deviation of the characteristics of integral circuits from rated values that requires application of the techniques for this effect compensation. In this paper there are considered the methods for development and calibration of the circuits in a basis of vector-sum signals allowing to modify both amplitude and phase of input high-frequency signal. It is proposed the method of calibration on a basis of interpolation of measured dependences of absolute value and phase of transfer factor on controlling voltage. Application of proposed method for calibration of vector phase shifter with operating frequency band 2.8–3.2 GHz fabricated with 0.18 μmCMOSallows to provide mean square deviation of phase error is not greater than 0.9°. At that amount of required measurements is 20 times decreased comparing known approach on a basis of measurement of all amplitude-phase states.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Gustafson, F. Tufvesson, “Characterization of 60 GHz shadowing by human bodies and simple phantoms,” Proc. of 6th European Conf. on Antennas and Propagation, 26–30 Mar, 2012, Prague, Czech Republic (IEEE, 2012), pp. 473–477. DOI: 10.1109/EuCAP.2012.6206265.Google Scholar
  2. 2.
    F. Ellinger, U. Mayer, M. Wickert, N. Joram, J. Wagner, R. Eickhoff, I. Santamaria, C. Scheytt, R. Kraemer, “Integrated adjustable phase shifters,” IEEE Microwave Magazine 11, No. 6, 97 (Oct. 2010). DOI: 10.1109/MMM.2010.937730.CrossRefGoogle Scholar
  3. 3.
    E. V. Balashov, I. A. Rumyancev, “A fully integrated 6–bit vector-sum phase shifter in 0.18 um CMOS,” Proc. of Int. Siberian Conf. on Control and Communications, 21–23 May 2015, Omsk, Russia (IEEE, 2015), pp. 1–5. DOI: 10.1109/SIBCON.2015.7146991.Google Scholar
  4. 4.
    Y.-Y. Huang, H. Jeon, Y. Yoon, W. Woo, C.-H. Lee, J. S. Kenney, “An ultra-compact, linearly-controlled variable phase shifter designed with a novel RC poly-phase filter,” IEEE Trans. Microwave Theory Tech. 60, No. 2, 301 (Feb. 2012). DOI: 10.1109/TMTT.2011.2177856.CrossRefGoogle Scholar
  5. 5.
    A. Asoodeh, M. Atarodi, “A full 360° vector-sum phase shifter with very low RMS phase error over a wide bandwidth,” IEEE Trans. Microwave Theory Tech. 60, No. 6, 1626 (June 2012). DOI: 10.1109/TMTT.2012. 2189227.CrossRefGoogle Scholar
  6. 6.
    I. I. Mukhin, V. V. Repin, “Development of semiconductor LIC of phase shifters with application of SiGe-biCMOS,” Izv. Vyssh. Uchebn. Zaved., Elektron., No. 4, 54 (2012).Google Scholar
  7. 7.
    H. Erkens, R. Wunderlich, S. Heinen, “A novel SiGe RFIC approach towards low-cost S-band transmit/receive modules,” Proc. of IEEE Radar Conf., 4–8 May 2009, Pasadena, CA, USA (IEEE, 2009), pp. 1–4. DOI: 10.1109/RADAR.2009.4976951.Google Scholar
  8. 8.
    E. V. Balashov, A. S. Korotkov, I. A. Rumyancev, “An unbalanced transformerless vector-sum phase shifter in 0.18 μm CMOS,” Selected Articles of VII All-Russia Science & Technology Conference: Problems of Advanced Micro-and Nanoelectronic Systems Development (IPPM RAS, Moscow, 2017), Part III, pp. 2–5. URI: Google Scholar
  9. 9.
    N. Joram, U. Mayer, R. Eickhoff, F. Ellinger, “Fully integrated active CMOS vector modulator for 802.11a compliant diversity transceivers,” Proc. of IEEE Int. Conf. on Microwaves, Communications, Antennas and Electronics Systems, 9–11 Nov. 2009, Tel Aviv, Israel (IEEE, 2010), pp. 1–4. DOI: 10.1109/COMCAS.2009. 5386002.Google Scholar
  10. 10.
    T.-C. Yan, W.-Z. Lin, C.-N. Kuo, “A 0.75–2.67 GHz 5–bit vector-sum phase shifter,” Proc. of European Microwave Integrated Circuit Conf., 6–8 Oct. 2013, Nuremberg, Germany (IEEE, 2013), pp. 196–199. URI: Google Scholar
  11. 11.
    B. Cetindogan, E. Ozeren, B. Ustundag, M. Kaynak, Y. Gurbuz, “A 6 bit vector-sum phase shifter with a decoder based control circuit for X-band phased-arrays,” IEEE Microwave Wireless Components Lett. 26, No. 1, 64 (Jan. 2016). DOI: 10.1109/LMWC.2015.2505618.CrossRefGoogle Scholar
  12. 12.
    J. Wagner, N. Joram, R. Wolf, F. Ellinger, “Broadband inductorless vector modulator IC for localisation and communication systems,” Electronics Lett. 51, No. 10, 767 (2015). DOI: 10.1049/el.2015.0343.CrossRefGoogle Scholar
  13. 13.
    F. Ellinger, U. Lott, W. Bachtold, “An antenna diversity MMIC vector modulator for HIPERLAN with low power consumption and calibration capability,” IEEE Trans. Microwave Theory Tech. 49, No. 5, 964 (May 2001). DOI: 10.1109/22.920155.CrossRefGoogle Scholar
  14. 14.
    P.-S. Wu, H.-Y. Chang, M.-D. Tsai, T.-W. Huang, H. Wang, “New miniature 15-20-GHz continuous-phase/amplitude control MMICs using 0.18-μm CMOS technology,” IEEE Trans. Microwave Theory Tech. 54, No. 1, 10 (Jan. 2006). DOI: 10.1109/TMTT.2005.860896.CrossRefGoogle Scholar
  15. 15.
    W.-J. Jung, N.-P. Hong, K.-H. Nam, J.-H. Lee, T.-J. Kim, P. Jang, J.-S. Park, “An improved vector modulator using Q-factor calibration for 5–6GHz beamforming receiver,” Proc. of Int. Conf. on Electronics, Information, and Communication, 24–27 Jan 2018, Honolulu, HI, USA (IEEE, 2018), pp. 1–5. DOI: 10.23919/ELINFOCOM. 2018.8330709.Google Scholar
  16. 16.
    C. Wang, J. Miao, “Implementation and broadband calibration of a multichannel vector modulator module,” IET Science, Measurement & Technology 11, No. 2, 155 (2017). DOI: 10.1049/iet-smt.2016.0072.MathSciNetCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Peter the Great Saint Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations