Advertisement

Radioelectronics and Communications Systems

, Volume 61, Issue 11, pp 477–514 | Cite as

Adaptive Lattice Filters for Systems of Space-Time Processing of Non-Stationary Gaussian Processes

  • D. I. LekhovytskiyEmail author
Article
  • 7 Downloads

Abstract

Adaptive systems protecting pulse radars from non-stationary in time (range) clutter echoes are usually tuned using training vectors composed of complex amplitudes of input signals and comprising a finite-length “sliding window” of data. From any current range gate to a subsequent one, a training sample is partially updated (or modified) by means of excluding the “old” training vectors (correspond to the current range gate) and including the “new” ones (correspond to the next range gate). As a consequence, respective estimates of adaptive system parameters are corrected according to a modified sample correlation matrix (CM), which is typically a sum of an initialCMand a modifying matrix of rank K ≥ 1. In this case it is possible to avoid re-computing these parameters based on a new training sample of full size and, instead of this, we correct them in an “economical” way employing K-rank modification of a matrix inverse to the CM estimate.

This paper is devoted to comparative analysis of various (K ≥ 1)-rank modification algorithms that correct the parameters of adaptive lattice filters (ALF). Main attention is paid to synthesis as well as theoretical and experimental study of algorithms of direct (K > 1)-rank modification of the ALF parameters. These algorithms attain the said objective omitting the K-fold application of known rank-one (K = 1) modification algorithms. We also synthesize a combined algorithm (CA) of (K ≥ 1)-rank modification of the ALF parameters that is more computationally simple and more numerically robust compared to known algorithms. The ALF employing the CA can serve as an effective tool for solving various tasks of space-time adaptive signal processing in pulse radars of different purpose.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. D. Shirman (ed.), Radioelectronic Systems: Fundamentals of Construction and Theory, Handbook, 2nd ed. [in Russian] (Radiotekhnika, Moscow, 2007).Google Scholar
  2. 2.
    J. R. Rice, Matrix Computations and Mathematical Software (McGraw-Hill, New York, 1981).zbMATHGoogle Scholar
  3. 3.
    V. V. Voevodin, E. E. Tyrtyshnikov, Computational Processes with Toeplitz Matrices [in Russian] (Nauka, Moscow, 1987).zbMATHGoogle Scholar
  4. 4.
    P. E. Gill, W. Murray (eds.), Numerical Methods for Constrained Optimization (Academic Press, New York, 1974).Google Scholar
  5. 5.
    V. V. Voevodin, Computational Fundamentals of Linear Algebra [in Russian] (Nauka, Moscow, 1977).Google Scholar
  6. 6.
    H. Lev-Ari, T. Kailath, “Schur and Levinson algorithms for nonstationary processes,” in: Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP’81, 30 Mar.-1 Apr. 1981, Atlanta, GA, USA (IEEE, 1981). DOI: 10.1109/ICASSP.1981.1171194.Google Scholar
  7. 7.
    D. I. Lekhovytskiy, “Generalized Levinson algorithm and universal lattice filters,” Radiophys. Quantum Electron. 35, No. 9–10, 509 (1992). DOI: 10.1007/BF01044971.MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. P. Burg, “A new analysis technique for time series data,” Proc. of NATO Advanced Study Institute on Signal Processing with Emphasis on Underwater Acoustics, Enschede, The Netherlands (Enschede, Netherlands, 1968).Google Scholar
  9. 9.
    F. Itakura, S. Saito, “Digital filtering techniques for speech analysis and synthesis,” Proc. of 7th Int. Congress on Acoustics, Budapest, Hungary (Akadémiai Kiadó, Budapest, 1971), Vol. 3, pp. 261–264.Google Scholar
  10. 10.
    A. Gray, J. Markel, “Digital lattice and ladder filter synthesis,” IEEE Trans. Audio Electroacoust. 21, No. 6, 491 (1973). DOI: 10.1109/TAU.1973.1162522.CrossRefGoogle Scholar
  11. 11.
    B. Friedlander, “Lattice filters for adaptive processing,” Proc. IEEE 70, No. 8, 829 (1982). DOI: 10.1109/PROC. 1982.12407.CrossRefGoogle Scholar
  12. 12.
    B. Friedlander, “Lattice methods for spectral estimation,” Proc. IEEE 70, No. 9, 990 (1982). DOI: 10.1109/PROC.1982.12429.CrossRefGoogle Scholar
  13. 13.
    C. F. N. Cowan, P. M. Grant (eds.), Adaptive Filters (Prentice Hall, Englewood Cliffs, NJ, 1985).zbMATHGoogle Scholar
  14. 14.
    A. H. Sayed, Fundamentals of Adaptive Filtering (John Wiley & Sons, Hoboken, NJ, 2003).Google Scholar
  15. 15.
    V. I. Djigan, Adaptive Filtering of Signals: Theory and Algorithms [in Russian] (Tekhnosfera, Moscow, 2013).Google Scholar
  16. 16.
    D. I. Lekhovytskiy, D. S. Rachkov, A. V. Semeniaka, V. P. Riabukha, D. V. Atamanskiy, “Adaptive lattice filters. Part I. Theory of lattice structures,” Prikladnaya Radioelektronika 10, No. 4, 380 (2011).Google Scholar
  17. 17.
    D. I. Lekhovytskiy, D. S. Rachkov, A. V. Semeniaka, V. P. Riabukha, D. V. Atamanskiy, “Adaptive lattice filters. Part II. Algorithms for ALF adjustment,” Prikladnaya Radioelektronika 10, No. 4, 405 (2011).Google Scholar
  18. 18.
    D. I. Lekhovytskiy, S. B. Milovanov, I. D. Rakov, B. G. Sverdlov, “Universal adaptive lattice filters. Adaptation for a given root of the estimating correlation matrix,” Radiophys. Quantum Electron. 35, No. 11–12, 621 (1992). DOI: 10.1007/BF01046658.CrossRefGoogle Scholar
  19. 19.
    D. I. Lekhovytskiy, “Thirty years experience in development of adaptive lattice filters theory, techniques and testing in Kharkiv,” Proc. of 2011 VIII Int. Conf. on Antenna Theory and Techniques, ICATT, 20–23 Sept. 2011, Kyiv, Ukraine (IEEE, 2011). DOI: 10.1109/ICATT.2011.6170713.Google Scholar
  20. 20.
    R. Nitzberg, “Application of maximum likelihood estimation of persymmetric covariance matrices to adaptive processing,” IEEE Trans. Aerosp. Electron. Syst. AES-16, No. 1, 124 (1980). DOI: 10.1109/TAES.1980.308887.CrossRefGoogle Scholar
  21. 21.
    D. I. Lekhovytskiy, “To the theory of adaptive signal processing in systems with centrally symmetric receive channels,” EURASIP J. Adv. Signal Process. 2016, No. 33 (2016). DOI: 10.1186/s13634-016-0329-z.Google Scholar
  22. 22.
    A. De Maio, D. Orlando, “An invariant approach to adaptive radar detection under covariance persymmetry,” IEEE Trans. Signal Process. 63, No. 5, 1297 (2015). DOI: 10.1109/TSP.2014.2388441.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Y. V. Shkvarko, “Unifying experiment design and convex regularization techniques for enhanced imaging with uncertain remote sensing data—Part I: Theory,” IEEE Trans. Geosci. Remote Sens. 48, No. 1, 82 (2010). DOI: 10.1109/TGRS.2009.2027695.CrossRefGoogle Scholar
  24. 24.
    Y. V. Shkvarko, “Unifying experiment design and convex regularization techniques for enhanced imaging with uncertain remote sensing data—Part II: Adaptive implementation and performance issues,” IEEE Trans. Geosci. Remote Sens. 48, No. 1, 96 (2010). DOI: 10.1109/TGRS.2009.2027696.CrossRefGoogle Scholar
  25. 25.
    Y. V. Shkvarko, J. Tuxpan, S. Santos, “Dynamic experiment design regularization approach to adaptive imaging with array radar/SAR sensor systems,” Sensors 11, No. 5, 4483 (2011). DOI: 10.3390/s110504483.CrossRefGoogle Scholar
  26. 26.
    G. D. Martín del Campo, A. Reigber, Y. V. Shkvarko, “Resolution enhanced SAR tomography: bold roman A nonparametric iterative adaptive approach,” in: Proc. of 2016 IEEE Int. Geoscience and Remote Sensing Symp., IGARSS, 10–15 Jul. 2016, Beijing, China (IEEE, 2016). DOI: 10.1109/IGARSS.2016.7729838.Google Scholar
  27. 27.
    D. S. Rachkov, D. I. Lekhovytskiy, “Lattice-filter-based unified structure of system for interperiod processing of weather radar signals,” in: Proc. of 2015 IEEE Radar Conf., RadarCon, 10–15 May 2015, Arlington, USA (IEEE, 2015), pp. 1234–1239. DOI: 10.1109/RADAR.2015.7131183.CrossRefGoogle Scholar
  28. 28.
    D. S. Rachkov, D. I. Lekhovytskiy, A. V. Semeniaka, B. M. Vovshin, U. U. Laurukevich, “Lattice implementation of ‘superresolving’ methods for meteorological objects spectra estimation,” in: Proc. of 2014 15th Int. Radar Symp., IRS, 16–18 Jun. 2014, Gdansk, Poland (IEEE, 2014), pp. 35–38. DOI: 10.1109/IRS. 2014.6869229.Google Scholar
  29. 29.
    K. C. Sharman, T. S. Durrani, “Spatial lattice filter for high-resolution spectral analysis of array data,” IEE Proc. F -Commun., Radar Signal Process. 130, No. 3, 279 (1983). DOI: 10.1049/ip-f-1:19830047.CrossRefGoogle Scholar
  30. 30.
    I. S. Reed, J. D. Mallett, L. E. Brennan, “Rapid convergence rate in adaptive arrays,” IEEE Trans. Aerosp. Electron. Syst. AES-10, No. 6, 853 (1974). DOI: 10.1109/TAES.1974.307893.CrossRefGoogle Scholar
  31. 31.
    D. S. Rachkov, D. I. Lekhovytskiy, A. V. Semeniaka, V. P. Riabukha, D. V. Atamanskiy, “Lattice-filter-based ground clutter canceller for pulse Doppler weather radar,” in: Proc. of 2014 15th Int. Radar Symp., IRS, 16–18 Jun. 2014, Gdansk, Poland (IEEE, 2014), pp. 215–219. DOI: 10.1109/IRS.2014.6869251.Google Scholar
  32. 32.
    D. I. Lekhovytskiy, D. V. Atamanskiy, V. P. Riabukha, D. S. Rachkov, A. V. Semeniaka, “Combining target detection against the background of jamming signals and jamming signal DOA estimation,” in: Proc. of 2015 Int. Conf. on Antenna Theory and Techniques, ICATT, 21–24 Apr. 2015, Kharkiv, Ukraine (IEEE, 2015), pp. 36–40. DOI: 10.1109/ICATT.2015.7136777.Google Scholar
  33. 33.
    W.-H. Yang, S. H. Holan, C. K. Wikle, “Bayesian lattice filters for time-varying autoregression and time-frequency analysis,” Bayesian Analysis 11, No. 4, 977 (2016). DOI: 10.1214/15-BA978.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    M. T. Ozden, “Sequential convex combinations of multiple adaptive lattice filters in cognitive radio channel identification,” EURASIP J. Adv. Signal Process. 2018, 45 (2018). DOI: 10.1186/s13634-018-0567-3.CrossRefGoogle Scholar
  35. 35.
    A. Castillo-Atoche, D. Torres-Roman, Y. V. Shkvarko, “Towards real time implementation of reconstructive signal processing algorithms using systolic array coprocessors,” J. Syst. Archit. 56, No. 8, 327 (2010). DOI: 10.1016/j.sysarc.2010.05.004.CrossRefGoogle Scholar
  36. 36.
    Y. V. Shkvarko, J. I. Yanez, J. A. Amao, G. D. Martín del Campo, “Radar/SAR image resolution enhancement via unifying descriptive experiment design regularization and wavelet-domain processing,” IEEE Geosci. Remote Sens. Lett. 13, No. 2, 152 (2016). DOI: 10.1109/LGRS.2015.2502539.CrossRefGoogle Scholar
  37. 37.
    Y. I. Abramovich, N. K. Spencer, B. A. Johnson, “Band-inverse TVAR covariance matrix estimation for adaptive detection,” IEEE Trans. Aerosp. Electron. Syst. 46, No. 1, 375 (2010). DOI: 10.1109/TAES.2010. 5417169.CrossRefGoogle Scholar
  38. 38.
    D. I. Lekhovytskiy, Y. I. Abramovich, “Adaptive lattice filters for band-inverse (TVAR) covariance matrix approximations: theory and practical applications,” in: Proc. of 2009 Int. Radar Symp., IRS 2009, Hamburg, Germany (TUHH, Hamburg, 2009), pp. 535–539.Google Scholar
  39. 39.
    D. Lee, M. Morf, B. Friedlander, “Recursive least squares ladder estimation algorithms,” IEEE Trans. Acoust., Speech, Signal Process. 29, No. 3, 627 (1981). DOI: 10.1109/TASSP.1981.1163587.MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    H. Dym, I. Gohberg, “Extensions of band matrices with band inverses,” Linear Algebra and its Applications 36, 1 (1981). DOI: 10.1016/0024-3795(81)90215-9.MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Y. I. Abramovich, N. K. Spencer, M. D. E. Turley, “Time-varying autoregressive (TVAR) models for multiple radar observations,” IEEE Trans. Signal Process. 55, No. 4, 1298 (2007). DOI: 10.1109/TSP.2006.888064.MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Y. I. Abramovich, N. K. Spencer, M. D. E. Turley, “Order estimation and discrimination between stationary and time-varying (TVAR) autoregressive models,” IEEE Trans. Signal Process. 55, No. 6, 2861 (2007). DOI: 10.1109/TSP.2007.893966.MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Y. I. Abramovich, B. A. Johnson, “Adaptive radar detection for sample-starved Gaussian training conditions,” in: A. De Maio, M. S. Greco [eds.], Modern Radar Detection Theory (SciTech Publishing, Edison, NJ, 2016), pp. 165–262. DOI: 10.1049/SBRA509E_ch6.Google Scholar
  44. 44.
    W. L. Melvin, “Space-time adaptive processing for radar,” in: N. D. Sidiropoulos, F. Gini, R. Chellappa, S. Theodoridis, (eds.), Academic Press Library in Signal Processing. Vol. 2: Communications and Radar Signal Processing (2014), Chapter 12, pp. 595–665. DOI: 10.1016/B978-0-12-396500-4.00012-0.CrossRefGoogle Scholar
  45. 45.
    Y. I. Abramovich, N. K. Spencer, A. Y. Gorokhov, “Modified GLRT and AMF framework for adaptive detectors,” IEEE Trans. Aerosp. Electron. Syst. 43, No. 3, 1017 (2007). DOI: 10.1109/TAES.2007.4383590.CrossRefGoogle Scholar
  46. 46.
    P. E. Gill, G. H. Golub, W. Murray, M. A. Saunders, “Methods for modifying matrix factorizations,” Math. Comp. 28, No. 126, 505 (1974). DOI: 10.1090/S0025-5718-1974-0343558-6.MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    K. D. Ikramov, Numerical Methods for Symmetric Linear Systems [in Russian] (Nauka, Moscow, 1988).zbMATHGoogle Scholar
  48. 48.
    D. T. L. Lee, “Canonical ladder form realizations and fast estimation algorithms,” Ph.D. Dissertation (Stanford, CA, 1980).Google Scholar
  49. 49.
    O. Krause, C. Igel, “A more efficient rank-one covariance matrix update for evolution strategies,” in: Proc. of 2015 ACM Conf. on Foundations of Genetic Algorithms XIII, FOGA’15, 17–22 Jan. 2015, Aberystwyth, United Kingdom (ACM, New York, 2015), pp. 129–136. DOI: 10.1145/2725494.2725496.CrossRefGoogle Scholar
  50. 50.
    Z. Li, Q. Zhang, “An efficient rank-1 update for Cholesky CMA-ES using auxiliary evolution path,” in: Proc. of 2017 IEEE Congress on Evolutionary Computation, CEC, 5–8 Jun. 2017, San Sebastian, Spain (IEEE, 2017). DOI: 10.1109/CEC.2017.7969406.Google Scholar
  51. 51.
    Z. Li, Q. Zhang, “A simple yet efficient rank one update for covariance matrix adaptation,” arXiv preprint (2017). 16 p. URI: https://doi.org/arxiv.org/abs/1710.03996. Google Scholar
  52. 52.
    H.-G. Beyer, B. Sendhoff, “Simplify your covariance matrix adaptation evolution strategy,” IEEE Trans. Evol. Comput. 21, No. 5, 746 (2017). DOI: 10.1109/TEVC.2017.2680320.CrossRefGoogle Scholar
  53. 53.
    S. J. Olszanskyj, J. M. Lebak, A. W. Bojanczyk, “Rank-k modification methods for recursive least squares problems,” Numer. Algor. 7, No. 2, 325 (1994). DOI: 10.1007/BF02140689.MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    H. Oh, Z. Hu, “Multiple-rank modification of symmetric eigenvalue problem,” MethodsX 5, 103 (2018). DOI: 10.1016/j.mex.2018.01.001.CrossRefGoogle Scholar
  55. 55.
    L. Deng, “Multiple-rank updates to matrix factorizations for nonlinear analysis and circuit design,” Ph.D. Dissertation (Stanford, CA, 2010).Google Scholar
  56. 56.
    R. Bellman, Introduction to Matrix Analysis (McGraw-Hill, New York, 1960).zbMATHGoogle Scholar
  57. 57.
    I. Stanimirovic, Computation of Generalized Matrix Inverses and Applications (Apple Academic Press, Waretown, NJ, 2017).CrossRefzbMATHGoogle Scholar
  58. 58.
    C. M. Rader, A. O. Steinhardt, “Hyperbolic Householder transformations,” IEEE Trans. Acoust., Speech, Signal Process. 34, No. 6, 1589 (1986). DOI: 10.1109/TASSP.1986.1164998.CrossRefzbMATHGoogle Scholar
  59. 59.
    A. W. Bojanczyk, A. O. Steinhardt, “Stabilized hyperbolic Householder transformations,” IEEE Trans. Acoust., Speech, Signal Process. 37, No. 8, 1286 (1989). DOI: 10.1109/29.31277.MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    A. W. Bojanczyk, J. G. Nagy, R. J. Plemmons, Row Householder transformations for rank-k Cholesky inverse modifications. IMA Preprint Series 978 (University of Minnesota, Minneapolis, MN, 1992). URI: https://doi.org/hdl.handle.net/11299/1897. Google Scholar
  61. 61.
    D. I. Lekhovytskiy, D. S. Rachkov, A. V. Semeniaka, “K-rank modification of adaptive lattice filter parameters,” in: Proc. of 2015 IEEE Radar Conf., RadarCon, 10–15 May 2015, Arlington, VA, USA (IEEE, 2015). DOI: 10.1109/RADAR.2015.7130983.Google Scholar
  62. 62.
    Y. I. Abramovich, “Controlled method for adaptive optimization of filters using the criterion of maximum signal-to-noise ratio,” Radiotekh. Elektron. 26, No. 3, 87 (1981).Google Scholar
  63. 63.
    H. V. Henderson, S. R. Searle, “On deriving the inverse of bold roman a sum of matrices,” SIAM Rev. 23, No. 1, 53 (1981). DOI: 10.1137/1023004.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Kvant Radar Systems Scientific Research InstituteKyivUkraine

Personalised recommendations