Technological Fabrication Features of Microwave Device with Schottky Barriers
- 5 Downloads
Abstract
At present, research and development of heterojunctions are conducted in the directions of searching for new compositions and technological regimes for the creation of ohmic and barrier transitions for gallium arsenide. The transition to silver-based metallization, which has large thermal and electrical conductivity comparing with gold and a relatively low diffusion coefficient to gallium arsenide, should improve the technical characteristics of the devices. One of the most important technological operations in the formation of Schottky ohmic contacts and barriers is thermal annealing. Silver to gallium arsenide contacts are made in vacuum by the method of thermal evaporation. The deposition and thermal treatment regimes for creating ohmic contacts of Ag–Ge–In/n–n+ GaAs with specific contact resistance ρc = (5...7)+10–5 Ω.cm2 are developed. The influence of the substrate temperature during the silver deposition and the annealing temperature on the height of the Schottky barrier Ag/n–n+ GaAs, the injection coefficient γ and the nonideality factor η is established.
Preview
Unable to display preview. Download preview PDF.
References
- 1.A. I. Belous, V. A. Solodukha, S. V. Shvedov, Space Electronics, 2nd book [in Russian] (Tekhnosfera, Moscow, 2015).Google Scholar
- 2.E. Ya. Shvets, A. G. Kolomoets, “Estimation of prospects of application of GaAs and alloys on his basis as materials for sun elements,” Metallurgy, No. 30, 132 (2013). URI: http://www.zgia.zp.ua/gazeta/Metallurgy_30_132.pdf.Google Scholar
- 3.M. V. Zagirniak, A. P. Oksanich, V. R. Petrenko, S. E. Pritchin, V. A. Terban, “Development of modern technologies for growing structurally perfect ingots of electronic gallium arsenide,” Proc. of 5th Int. Sci. Conf. on Functional Base of Nanoelectronics, Katsiveli (NURE, Kharkiv, 2012), pp. 5–13.Google Scholar
- 4.S. A. Zuev, G. V. Kilessa, E. E. Asanov, V. V. Starostenko, S. V. Pokrova, “Dependence of the conductivity on the active-region thickness in GaAs thin-film Schottky diodes,” Semiconductors 50, No. 6, 810 (2016). DOI: 10.1134/S1063782616060269.CrossRefGoogle Scholar
- 5.Chan Hyeong Park, Jong-Ho Lee, “Formulas of 1/f noise in Schottky barrier diodes under reverse bias,” Solid-State Electronics 69, 85 (2012). DOI: 10.1016/j.sse.2011.11.030.CrossRefGoogle Scholar
- 6.S. V. Platonov, N. V. Permyakov, B. I. Seleznev, V. A. Moshnikov, E. Yu. Kozlovskiy, A. M. Osipov, “Low-noise gallium-arsenide amplifiers under the influence of electromagnetic interferences of increased intensity,” Bulletin of Novgorod State University, No. 67, 29 (2012). URI: http://www.novsu.ru/file/1010219.Google Scholar
- 7.E. V. Erofeev, “Formation of metal-semiconductor contacts with metallization on the basis of Al and Cu for GaAs microwave transistors with high electron mobility,” PhD thesis, specialization: 01.04.04 Physical electronics. (Tomsk, 2012). URI: http://old.tusur.ru/export/sites/ru.tusur.new/ru/science/education/diss/2012/03/01.pdf.Google Scholar
- 8.G. I. Koltsov, S. I. Didenko, A. V. Chernykh, S. V. Chernykh, A. P. Chubenko, Yu. N. Sveshnikov, “Schottky contacts to high-resistivity epitaxial GaAs layers for detectors of particles and X-or-ray photons,” Semiconductors 46, No. 8, 1066 (2012). DOI: 10.1134/S106378261208009X.CrossRefGoogle Scholar
- 9.H. Tecimer, A. Türüt, H. Uslu, ş. Altýndal, Ý. Uslu, “Temperature dependent current-transport mechanism in Au/(Zn-doped)PVA/n-GaAs Schottky barrier diodes (SBDs),” Sensors and Actuators A: Physical 199, 194 (2013). DOI: 10.1016/j.sna.2013.05.027.CrossRefGoogle Scholar
- 10.P. Jayavel, J. Kumar, P. Ramasamy, R. Premanand, “On the evaluation of Schottky barrier diode parameters of Pd, Au and Ag/n-GaAs,” Indian J. Eng. Materials Sci. 7, No. 5-6, 340 (2000). URI: http://nopr.niscair.res.in/handle/123456789/24425.Google Scholar
- 11.V. S. Dmitriev, E. Ya. Shvets, “Technological features of manufacturing a traveling wave amplifier,” Proc. of 10th Int. Youth Sci. Conf. on Modern Problems of Radio Engineering and Telecommunications, RT-2014, Sevastopol (SevNTU, 2014). p. 158. ISBN 978-617-612-072.Google Scholar
- 12.P. Huo, I. Rey-Stolle, “Ti/Pd/Ag contacts to n-type GaAs for high current density devices,” J. Electronic Materials 45, No. 6, 2769 (2016). DOI: 10.1007/s11664-016-4432-6.CrossRefGoogle Scholar
- 13.E. Özavcý, S. Demirezen, U. Aydemir, ş. Altýndal, “A detailed study on current-voltage characteristics of Au/n-GaAs in wide temperature range,” Sensors and Actuators A: Physical 194, 259 (2013). DOI: 10.1016/j.sna.2013.02.018.CrossRefGoogle Scholar
- 14.M. K. Hudait, P. Venkateswarlu, S. B. Krupanidhi, “Electrical transport characteristics of Au/n-GaAs Schottky diodes on n-Ge at low temperatures,” Solid-State Electronics 45, No. 1, 133 (2001). DOI: 10.1016/S0038-1101(00)00230-6.CrossRefGoogle Scholar
- 15.D. Korucu, A. Turut, ş. Altýndal, “The origin of negative capacitance in Au/n-GaAs Schottky barrier diodes (SBDs) prepared by photolithography technique in the wide frequency range,” Current Appl. Phys. 13, No. 6, 1101 (2013). DOI: 10.1016/j.cap.2013.03.001.CrossRefGoogle Scholar
- 16.W. P. Leroy, K. Opsomer, S. Forment, R. L. Van Meirhaeghe, “The barrier height inhomogeneity in identically prepared Au/n-GaAs Schottky barrier diodes,” Solid-State Electronics 49, No. 6, 878 (2005). DOI: 10.1016/j.sse.2005.03.005.CrossRefGoogle Scholar
- 17.Jing Lv, Fachun Lai, Limei Lin, Yongzhong Lin, Zhigao Huang, Rong Chen, “Thermal stability of Ag films in air prepared by thermal evaporation,” Appl. Surface Sci. 253, No. 17, 7036 (2007). DOI: 10.1016/j.apsusc.2007.02.058.CrossRefGoogle Scholar
- 18.H. C. Kim, T. L. Alford, “Improvement of the thermal stability of silver metallization,” J. Appl. Phys. 94, No. 8, 5393 (2003). DOI: 10.1063/1.1609646.CrossRefGoogle Scholar
- 19.K. Sugawara, M. Kawamura, Y. Abe, K. Sasaki, “Comparison of the agglomeration behavior of Ag(Al) films and Ag(Au) films,” Microelectron. Eng. 84, No. 11, 2476 (2007). DOI: 10.1016/j.mee.2007.05.050.CrossRefGoogle Scholar
- 20.M. Kawamura, M. Yamaguchi, Y. Abe, K. Sasaki, “Electrical and morphological change of Ag-Ni films by annealing in vacuum,” Microelectron. Eng. 82, No. 3-4, 277 (2005). DOI: 10.1016/j.mee.2005.07.035.CrossRefGoogle Scholar
- 21.A. Christou, “Solid phase formation in Au: Ge/Ni, Ag/In/Ge, In/Au: Ge GaAs ohmic contact systems,” Solid-State Electronics 22, No. 2, 141 (1979). DOI: 10.1016/0038-1101(79)90106-0.CrossRefGoogle Scholar
- 22.V. S. Dmitriev, E. Ya. Shvets, L. B. Dmitrieva, “Technological feature of fabrication of contact to GaAs,” Scientific Bulletin of KUEITM ‘New Technologies’, No. 1-2, 48 (2013).Google Scholar
- 23.A. V. Murel, V. M. Daniltsev, E. V. Demidov, M. N. Drozdov, V. I. Shashkin, “Effect of rapid thermal annealing on the parameters of gallium-arsenide low-barrier diodes with near-surface δ-doping,” Semiconductors 47, No. 11, 1470 (2013). DOI: 10.1134/S106378261311016X.CrossRefGoogle Scholar
- 24.T. U. Kampen, S. Park, D. R. T. Zahn, “Barrier height engineering of Ag/GaAs(100) Schottky contacts by a thin organic interlayer,” Appl. Surface Sci. 190, No. 1-4, 461 (2002). DOI: 10.1016/S0169-4332(01)00919-9.CrossRefGoogle Scholar
- 25.V. Ya. Niskov, “Measurement of transient resistance of ohmic contacts to thin layers of semiconductors,” Instrum. Exp. Tech., No. 1, 235 (1971).Google Scholar
- 26.V. Ya. Niskov, V. V. Zadde, A. K. Zaitseva, V. I. Streltsova, “Measurement of transient resistance of contacts on thin layers of semiconductor,” Instrum. Exp. Tech., No. 2, 240 (1971).Google Scholar
- 27.V. Ya. Niskov, G. A. Kubetskiy, “Ohmic contacts resistance to a thin semiconductor layers,” Semiconductors 4, No. 9, 1806 (1970).Google Scholar
- 28.S. M. Sze, K. N. Kwok, Physics of Semiconductor Devices, 3rd ed. (Hoboken: Wiley & Sons, Inc., 2006).CrossRefGoogle Scholar