Advertisement

Radioelectronics and Communications Systems

, Volume 59, Issue 11, pp 510–517 | Cite as

Synthesis method for bent sequences in the Vilenkin-Chrestenson basis

  • M. I. Mazurkov
  • A. V. SokolovEmail author
  • N. A. Barabanov
Article

Abstract

The paper presents a method developed for building a complete class of bent sequences of length N = 9 in the Vilenkin–Chrestenson basis based on employing three reference constructions. The first construction allows the bent sequences of arbitrary length N=32k , k ∈ ℕ to be built. The resultant bent sequences can be used both in cryptographic applications and as constant amplitude codes in the MC-CDMA technology. A design of the gamma xoring block of graphic and video information based on bent sequences in the Vilenkin–Chrestenson basis was also proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. I. Mazurkov, Broadband Radio Communication Systems (Nauka i Tekhnika, Odessa, 2010) [in Russian], ISBN 978-966-8335-95-2.Google Scholar
  2. 2.
    M. I. Mazurkov, N. A. Barabanov, A. V. Sokolov, “The key sequences generator based on bent functions dual couples,” Odes’kyi Politechnichnyi Universystet. Pratsi, No. 3, 150 (2013), http://pratsi.opu.ua/articles/show/1017.CrossRefGoogle Scholar
  3. 3.
    A. V. Sokolov, “Quick key sequences generator based on cellular automata,” Odes’kyi Politechnichnyi Universystet. Pratsi 43, No. 1, 180 (2014), http://pratsi.opu.ua/articles/show/1087.CrossRefGoogle Scholar
  4. 4.
    A. S. Ambrosimov, “Properties of bent functions of q-valued logic over finite fields,” Diskr. Mat. 6, No. 3, 50 (1994), http://mi.mathnet.ru/eng/dm639.MathSciNetzbMATHGoogle Scholar
  5. 5.
    Kenneth G. Paterson, “Sequences for OFDM and multi-code CDMA: two problems in algebraic coding theory,” Proc. of 2nd Int. Conf. on Sequences and Their Applications, Seta 2001, May 13–17, 2001, Bergen, Norway (Springer, Berlin, 2002), pp. 46–71, DOI: 10.1007/978-1-4471-0673-9_4.CrossRefGoogle Scholar
  6. 6.
    M. I. Mazurkov, A. V. Sokolov, N. A. Barabanov, “On the effect of the type of orthogonal transform on PAPR of signal spectrum inCDMAsystems,” Informatics and Mathematical Methods in Simulation 5, No. 1, 28 (2015).Google Scholar
  7. 7.
    S. O. Hnatiuk, T. O. Zhmurko, V. M. Kinzeriavyi, N. A. Seilova, “Method for quality evaluation of trip pseudorandom sequence to cryptographic applications,” Information Technology and Security 3, No. 2, 108 (2015), http://its.iszzi.kpi.ua/article/view/60891.Google Scholar
  8. 8.
    A. M. Trakhtman, V. A. Trakhtman, Foundations of the Theory of Discrete Signals over Finite Intervals (Sov. Radio, Moscow, 1975) [in Russian].zbMATHGoogle Scholar
  9. 9.
    A. V. Sokolov, O. N. Zhdanov, N. A. Barabanov, “On the existence of triple bent sequences,” Proc. of 19th Int. Youth Conf. on Radioelectronics and Youth in the XXI Century, 2015, Kharkiv, Ukraine (KhNURE, Kharkiv, 2015), Vol. 3.Google Scholar
  10. 10.
    N. N. Tokareva, “Bent functions: results and applications. A survey,” Appl. Discrete Math., No. 1, 15 (2009), http://journals.tsu.ru/pdm/en/&journal_page=archive&id=431&article_id=26255.MathSciNetGoogle Scholar
  11. 11.
    B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C (Wiley, 2015).CrossRefzbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • M. I. Mazurkov
    • 1
  • A. V. Sokolov
    • 1
    Email author
  • N. A. Barabanov
    • 1
  1. 1.Odessa National Polytechnic UniversityOdessaUkraine

Personalised recommendations