Advertisement

Radioelectronics and Communications Systems

, Volume 59, Issue 2, pp 66–73 | Cite as

Electrothermal analysis of GaN power submicron field-effect heterotransistors

  • V. I. Timofeyev
  • E. V. SemenovskayaEmail author
  • O. M. Falieieva
Article
  • 22 Downloads

Abstract

Physical processes and self-heating factors of in a power submicron field-effect heterotransistor have been considered. Mathematical models were proposed and the electrothermal analysis of heterotransistor parameters and characteristics was performed. The impact of thermal processes on parameters of the circuit model and the output frequency characteristics of submicron heterotransistor was shown on the basis of analysis of temperature fields. The relationship of the transistor thermal resistance as a function of its geometry and thermophysical parameters has been established.

Keywords

Thermal Resistance Boundary Element Method Thermal Model Power Gain Gallium Nitride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. J. Farlow, Partial Differential Equations for Scientists and Engineers (Dover Publications, New York, 1993).zbMATHGoogle Scholar
  2. 2.
    E. M. Kartashov, Analytical Methods in the Theory of Thermal Conductivity of Solid Bodies (Vyssh. Shkola, Moscow, 2001) [in Russian].Google Scholar
  3. 3.
    G. N. Dul’nev, V. G. Parfenov, A. V. Sigalov, Calculation Methods of Thermal Mode in Semiconductor Devices (Radio i Svyaz’, Moscow, 1990) [in Russian].Google Scholar
  4. 4.
    V. M. Verzhbitskii, Basics of Numerical Methods (Vyssh. Shkola, Moscow, 2002) [in Russian].Google Scholar
  5. 5.
    L. J. Segerlind, Applied Finite Element Analysis, 2nd ed. (Wiley, 1984).zbMATHGoogle Scholar
  6. 6.
    V. S. Zarubin, Engineering Methods of Solving the Heat Conduction Problems (Energoatomizdat, Moscow, 1983) [in Russian].Google Scholar
  7. 7.
    A. A. Samarskii, P. N. Vabishevich, Computational Heat Transfer (Editorial URSS, Moscow, 2003) [in Russian].Google Scholar
  8. 8.
    P. K. Banerjee, R. Butterfield, Boundary Element Methods in Engineering Science (McGraw-Hill, 1981).zbMATHGoogle Scholar
  9. 9.
    V. A. Koval’, D. V. Fedasyuk, V. V. Maslov, V. F. Tarnovskii, CAD for Microcircuitry Thermal Design (Vyssh. Shkola, 1988) [in Russian].Google Scholar
  10. 10.
    A. A. Mel’nikov, “Calculation of temperature fields in multilayer photodetector structures,” Microsystem Technique, No. 2, 21 (2000).Google Scholar
  11. 11.
    Sang-Soo Lee, D. J. Allstot, “Electrothermal simulation of integrated circuits,” IEEE J. Solid-State Circuits 28, No. 12, 1283 (Dec. 1993), DOI:  10.1109/4.262001.CrossRefGoogle Scholar
  12. 12.
    P. Turkes, J. Sigg, “Electro-thermal simulation of power electronic systems,” Microelectron. J. 29, No. 11, 785 (Nov. 1998), DOI:  10.1016/S0026-2692(97)00092-X.CrossRefGoogle Scholar
  13. 13.
    K. O. Petrosyants, “Simulation of thermal behavior of electronic components,” Proc. of XII Sci. and Tech. Conf. on Solid State Electronics. Complex Functional Units of REA, Moscow, Russia (MNTORES im. A.S. Popov, 2013), pp. 229–232.Google Scholar
  14. 14.
    A. M. Darwish, A. J. Bayba, H. A. Hung, “Thermal resistance calculation of AlGaN–GaN devices,” IEEE Trans. Microwave Theory Tech. 52, No. 11, 2611 (Nov. 2004), DOI:  10.1109/TMTT.2004.837200.CrossRefGoogle Scholar
  15. 15.
    V. A. Moskalyuk, V. I. Timofeev, A. V. Fedyai, Very High-Speed Electronic Devices: Tutorial (NTUU KPI, Kyiv, 2012) [in Russian].Google Scholar
  16. 16.
    V. Timofeyev, H. Semenovskaya, “Thermal resistance of power submicron heterojunction field-effect transistors,” Proc. of IEEE 33 Int. Sci. Conf. on Electronics and Nanotechnology, ELNANO, 16–19 Apr. 2013, Kyiv, Ukraine (IEEE, 2013), pp. 47–50, DOI:  10.1109/ELNANO.2013.6552007.Google Scholar
  17. 17.
    V. I. Timofeyev, E. M. Faleyeva, “Model of heterotransistor with quantum dots,” Semicond. Phys. Quantum Electron. Optoelectron. 13, No. 2, 186 (2010), http://journal-spqeo.org.ua/n2_2010/v13n2-2010-p186-188.pdf.Google Scholar
  18. 18.
    V. I. Timofeyev, E. M. Faleyeva, E. V. Semenovskaya, “Thermal analysis of power heterostructure field-effect transistors,” Proc. of IEEE 35 Int. Sci. Conf. on Electronics and Nanotechnology, ELNANO, 21–24 Apr. 2015, Kyiv, Ukraine (IEEE, 2015), pp. 239–241, DOI:  10.1109/ELNANO.2015.7146882.Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • V. I. Timofeyev
    • 1
  • E. V. Semenovskaya
    • 1
    Email author
  • O. M. Falieieva
    • 1
  1. 1.National Technical University of Ukraine “Kyiv Polytechnic Institute”KyivUkraine

Personalised recommendations