Radioelectronics and Communications Systems

, Volume 58, Issue 10, pp 435–443 | Cite as

Methodology of built and verification of non-linear EEHEMT model for GaN HEMT transistor

  • A. A. KokolovEmail author
  • L. I. Babak


It is considered a formalized methodology allowing to realize the extraction of the parameters of non-linear EEHEMT model for ultra-high frequency FET on a basis of measured low-signal S-parameters and voltage-current characteristics. We built a model of domestic 0.15 µm GaN HEMT transistor, operating in millimeter wavelength range as an example. Correctness and accuracy of the non-linear model obtained were verified by means of measurement of the output power and load characteristics of the transistor in large-signal operation.


Power Amplifier Drain Current Versus Versus Versus Versus Versus Reflection Factor Input Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. R. Curtice, M. Ettenberg, “A nonlinear GaAs FET model for use in the design of output circuits for power amplifier,” IEEE Trans. Microwave Theory Tech. 33, No. 12, 1383 (Dec. 1985), DOI: 10.1109/TMTT.1985.1133229.CrossRefGoogle Scholar
  2. 2.
    I. Angelov, H. Zirath, N. Rosman, “A new empirical nonlinear model for HEMT and MESFET devices,” IEEE Trans. Microwave Theory Tech. 40, No. 12, 2258 (Dec. 1992), DOI: 10.1109/22.179888.CrossRefGoogle Scholar
  3. 3.
    A. Materka, T. Kacprzak, “Computer calculation of large-signal GaAs FET amplifier characteristics,” IEEE Trans. Microwave Theory Tech. 33, No. 2, 129 (Feb. 1985), DOI: 10.1109/TMTT.1985.1132960.CrossRefGoogle Scholar
  4. 4.
    D. E. Root, S. Fan, Jeff Meyer, “Technology independent large signal non quasi-static FET models by direct construction from automatically characterized device data,” in Proc. of 21st Eur. Microwave Conf., 9–12 Sept. 1991, Stuttgart, Germany (IEEE, 1991), pp. 927–932, DOI: 10.1109/EUMA.1991.336465.Google Scholar
  5. 5.
    Suramat Chalermwisutkul, “Large signal modeling of GaN HEMTs for UMTS base station power amplifier design taking into account memory effects,” Dissert. … Doctor of Philosophy Electrical Engineering (Aachen University, Germany, 2007), 151 p.Google Scholar
  6. 6.
    S. Eskanadri, F. T. Hamedani, “Extracting the parameters of an EEHEMT nonlinear model for InP HEMT operating at G-band frequency,” in Proc. of 19th Int. Conf. on Mixed Design of Integrated Circuits and Systems, MIXDES, 24–26 May 2012, Warsaw (IEEE, 2012), pp. 360–363, Scholar
  7. 7.
    J. Dhar, S. K. Garg, R. K. Arora, S. S. Rana, “Nonlinear design of a C band power amplifier using EEHEMT nonlinear model,” in Proc. of Int. Symp. on Signals, Circuits and Systems, ISSCS 2007, 13–14 July 2007, Iasi (IEEE, 2007), pp. 1–4, DOI: 10.1109/ISSCS.2007.4292658.Google Scholar
  8. 8.
    R. Hajji, M. Poulton, D. B. Crittenden, J. Gengler, P. Xia, “GaN-HEMT nonlinear modeling of single-ended and Doherty high-power amplifiers,” in Proc. of 44th European Conf. on Microwave Integrated Circuits, EuMC, 6–9 Oct. 2014, Rome, Italy (IEEE, 2014), pp. 1317–1320, DOI: 10.1109/EuMC.2014.6986686.Google Scholar
  9. 9.
    Paolo Colantonio, Franco Giannini, Ernesto Limiti, High Efficiency RF and Microwave Solid State Power Amplifiers (John Wiley & Sons Ltd, 2009), 511 p., DOI: 10.1002/9780470746547.CrossRefGoogle Scholar
  10. 10.
    R. Tayrani, “A spectrally pure 5.0 W, high PAE (6-12 GHz) GaN monolithic class E power amplifier for advanced T/R modules,” in Proc. of IEEE Symp. on Radio Frequency Integrated Circuits, RFIC, 3–5 June 2007, Honolulu, HI (IEEE, 2007), pp. 581–584, DOI: 10.1109/RFIC.2007.380951.Google Scholar
  11. 11.
    A. P. M. Maas, J. A. Hoogland, “60 GHz GaAs MMIC mixers with integrated LO buffer,” in Proc. of Eur. Symp. on Gallium Arsenide and Other Semiconductor Application, EGAAS, 3–4 Oct. 2005, Paris, France (IEEE, 2005), pp. 465–468, Scholar
  12. 12.
    G. Dambrine, Alain Cappy, F. Heliodore, E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Tech. 36, No. 7, 1151 (Jul. 1988), DOI: 10.1109/22.3650.CrossRefGoogle Scholar
  13. 13.
    A. A. Kokolov, L. I. Babak, “A technique for extraction of HEMT small signal model,” Doklady TUSUR 22, No.7 2, 153 (2010), Scholar
  14. 14.
    M. Berroth, R. Bosch, “High-frequency equivalent circuit of GaAs FETs for large-signal applications,” IEEE Trans. Microwave Theory Tech. 39, No. 2, 224 (Feb. 1991), DOI: 10.1109/22.102964.CrossRefGoogle Scholar
  15. 15.
    Peter Aaen, Jaime A. Pla, John Wood, Modeling and Characterization of RF and Microwave power FETs (Cambridge University Press, 2007), 380 p.CrossRefGoogle Scholar
  16. 16.
    N. Rorsman, M. Garcia, C. Karlsson, H. Zirath, “Accurate small-signal modeling of HFET’s for millimeter-wave applications,” IEEE Trans. Microwave Theory Tech. 44, No. 3, 432 (Mar. 1996), DOI: 10.1109/22.486152.CrossRefGoogle Scholar
  17. 17.
    J. M. Cusack, S. M. Perlow, B. S. Perlman, “Automatic load contour mapping for microwave power transistors,” S-MTT Int. Microwave Symp. Dig., 12–14 Jun. 1974, Atlanta, Georgia, USA (IEEE, 1974), pp. 269–271, DOI: 10.1109/MWSYM.1974.1123569.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  1. 1.Tomsk State University of Control Systems and RadioelectronicsTomskRussia

Personalised recommendations