Radioelectronics and Communications Systems

, Volume 58, Issue 6, pp 241–249 | Cite as

Entropy approach to the investigation of information capabilities of adaptive radio engineering system in conditions of intrasystem uncertainty

  • V. V. Skachkov
  • V. V. Chepkyi
  • H. D. Bratchenko
  • A. N. Efymchykov


The Shannon entropy metric modified for solving the problem of estimating the information capabilities of adaptive radio engineering system in conditions of intrasystem uncertainty has been considered. The application of entropy approach was shown as a tool of the generalized representation of known criteria of adaptive signal processing during the intrasystem perturbations of system parametric vector.


Entropy Adaptive System Information Loss Internal Noise External Interference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. G. Repin and G. P. Tartakovskii, Statistical Synthesis in Conditions of A Priori Uncertainty and Adaptation of Information Systems (Sov. Radio, Moscow, 1977) [in Russian].Google Scholar
  2. 2.
    R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays (Wiley, New York, 1980).Google Scholar
  3. 3.
    J. P. Van Gigch, Applied General Systems Theory (Harper & Row, New York, 1978).Google Scholar
  4. 4.
    C. F. N. Cowan and P. M. Grant (eds.), Adaptive Filters (Prentice Hall, Englewood Cliffs, 1985).Google Scholar
  5. 5.
    V. V. Skachkov, “The effect of intrasystem interferences on the efficiency of adaptive signal processing with quadratic criterial function,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 40(10), 34 (1997) [Radioelectron. Commun. Syst. 40(10), 30 (1997)].Google Scholar
  6. 6.
    V. M. Koshevoi, Joint Optimization of Signals and Filters with Additional Restrictions: Textbook (Uchebno-metod. kabinet po vysshemu obrazovaniyu, Kiev, 1990) [in Russian].Google Scholar
  7. 7.
    V. I. Glushakov and S. V. Kobin, “Accuracy of microprocessor realization of algorithms for time-spatial processing of radio signals,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 28(4), 60 (1985) [Radioelectron. Commun. Syst. 28(4), 52 (1985)].Google Scholar
  8. 8.
    A. A. Greshilov, Incorrect Problems of Digital Processing of Data and Signals (Radio i Svyaz’, Moscow, 1984) [in Russian].Google Scholar
  9. 9.
    I. I. Gorban, Phenomenon of Statistical Stability (Naukova Dumka, Kyiv, 2014) [in Russian].Google Scholar
  10. 10.
    A. S. Leonov, “Generalization of the maximum entropy method for solving incorrect problems,” Sibirskii Matematicheskii Zhurnal 41, No. 4, 863 (July-August 2000).Google Scholar
  11. 11.
    D. I. Lekhovytskiy, Yu. I. Abramovich, V. P. Ryabukha, G. A. Zhuga, D. S. Rachkov, A. V. Semeniaka, “Band-diagonal regularization of ML-estimates of correlation matrices in problems of signal adaptive processing against the background of Gaussian interferences,” Prikladnaya Radioelektronika 10, No. 4, 419 (2011).Google Scholar
  12. 12.
    O. P. Cheremisin, “The efficiency of adaptive algorithm with regularization of sample correlation matrix,” Radiotekh. Elektron. 27, No. 10, 1933 (1982).Google Scholar
  13. 13.
    H. L. Van Trees, Detection, Estimation and Modulation Theory, Vol. 1, 2nd ed. (Wiley, 2013).Google Scholar
  14. 14.
    J. W. Demmel, Applied Numerical Linear Algebra (SIAM, 1997).Google Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • V. V. Skachkov
    • 1
  • V. V. Chepkyi
    • 1
  • H. D. Bratchenko
    • 1
  • A. N. Efymchykov
    • 1
  1. 1.Odessa State Academy of Technical Regulation and QualityOdessaUkraine

Personalised recommendations