Model of impedance delta-inhomogeneities for micro- and nanostructures

Article

Abstract

A model of impedance δ-inhomegeneities for wave micro- and nanostructures of different nature has been proposed. This model combines the advantages of approaches based on δ-function and wave impedance. Analytic expressions were derived for single- and two-phase resonators and crystal-like structures. The characteristics of resonators based on finite width inhomogeneities and δ-inhomogeneities, and also the characteristics of single- and two-phase resonators were compared.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Markos, C. M. Soukoulis, Wave Propagation from Electrons to Photonic Crystals and Left-Handed Materials (Princeton University Press, Princeton and Oxford, 2008).MATHGoogle Scholar
  2. 2.
    A. N. Khondker, M. Rezwan Khan, A. F. M. Anwar, “Transmission line analogy of resonance tunneling phenomena: The generalized impedance concept,” J. Appl. Phys. 63, No. 10, 5191 (1988). DOI: 10.1063/1.341154.CrossRefGoogle Scholar
  3. 3.
    A. F. M. Anwar, A. N. Khondker, M. Rezwan Khan, “Calculation of the traversal time in resonant tunneling devices,” J. Appl. Phys. 65, No. 7, 2761 (1989). DOI: 10.1063/1.342766.CrossRefGoogle Scholar
  4. 4.
    E. A. Nelin, “Impedance model for quantum-mechanical barrier problems,” Phys. Usp. 50, No. 3, 293 (2007). DOI: 10.1070/PU2007v050n03ABEH006091.CrossRefGoogle Scholar
  5. 5.
    E. A. Nelin, “Impedance characteristics of crystal-like structures,” Tech. Phys. 54, No. 7, 953 (2009). DOI: 10.1134/S1063784209070044.CrossRefGoogle Scholar
  6. 6.
    E. A. Nelin, “Resonance parameters of double-barrier structures,” Tech. Phys. Lett. 35, No. 5, 443 (2009). DOI: 10.1134/S1063785009050174.CrossRefGoogle Scholar
  7. 7.
    E. A. Nelin, “Impedance conditions for resonance propagation and resonance localization of waves in barrier structures,” Tech. Phys. 56, No. 1, 132 (2011). DOI: 10.1134/S106378421101018X.CrossRefGoogle Scholar
  8. 8.
    N. V. Zernov and V. G. Karpov, Theory of Radio Engineering Circuits (Energiya, Leningrad, 1972) [in Russian].Google Scholar
  9. 9.
    H. Guo, K. Diff, G. Neofotistos, J. D. Gunton, “Time-dependent investigation of the resonant tunneling in a double-barrier quantum well,” Appl. Phys. Lett. 53, No. 2, 131 (July 1988). DOI: 10.1063/1.100349.CrossRefGoogle Scholar
  10. 10.
    M. L. Gorodetskii, Foundations of the Theory of Optical Microresonators (MGU, Moscow, 2010) [in Russian].Google Scholar
  11. 11.
    A. I. Nazarko, E. A. Nelin, V. I. Popsui, Yu. F. Timofeeva, “Two-phase electromagnetic crystal,” Tech. Phys. Lett. 37, No. 2, 185 (2011). DOI: 10.1134/S1063785011020283.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  1. 1.National Technical University of Ukraine “Kyiv Polytechnic Institute”KyivUkraine

Personalised recommendations