Advertisement

Radioelectronics and Communications Systems

, Volume 56, Issue 10, pp 493–501 | Cite as

Formation peculiarities and properties of ohmic contacts to n-GaN(AlN) and artificial diamond

  • V. N. Sheremet
Article

Abstract

The paper considers ohmic contacts of Au-TiB x -Al-Ti-n-GaN, Au-Pd-Ti-Pd-n-AlN and Au-Pd-Ti-n-C to the promising for use in microelectronics wide-gap semiconductors. Ohmic contact formation takes place after sequential layering of metal with further fast thermal processing, which leads to solid-phase reactions between the semiconductor and metal. It is shown that the use of X-ray amorphous TiB x layer in ohmic contact as the diffusion barrier allows for creating thermal stability contacts up to T = 900 °C. Current flow in the considered ohmic contacts is described using a model with current flow along metal shunts considering diffusion limitation on the charge carrier supply.

Keywords

Thermal Processing Ohmic Contact Contact Structure Gallium Nitride Specific Contact Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Annaig, G. Graziella, G. Demazeau, “Gallium nitride bulk crystal growth processes: a review,” Mater. Sci. Eng. R: Reports 50, No. 6, 167 (2006). DOI: 10.1016/j.mser.2005.11.001.CrossRefGoogle Scholar
  2. 2.
    Handbook Series on Semiconductor Parameters, Vol. 1, 2 (World Scientific, London, 1996, 1999) [ed. by M. Levinstein, S. Rumyantsev and M. Shur].Google Scholar
  3. 3.
    Hiroyuki Kamata, Kunihiro Naoe, Kazuo Sanada, Noboru Ichinose, “Single-crystal growth of aluminum nitride on 6H-SiC substrates by an open-system sublimation method,” J. Crystal Growth. 311, No. 5, 1291 (2009). DOI: 10.1016/j.jcrysgro.2008.12.025.CrossRefGoogle Scholar
  4. 4.
    T. V. Blank, Yu. A. Gol’dberg, “Mechanisms of current flow in metal-semiconductor ohmic contacts,” Semiconductors 41, No. 11, 1263 (2007). DOI: 10.1134/S1063782607110012.CrossRefGoogle Scholar
  5. 5.
    Yu. G. Shretter, Yu. T. Rebane, B. A. Zykov, V. G. Sidorov, Wide-Gap Semiconductors (Nauka, St. Petersburg, 2001) [in Russian].Google Scholar
  6. 6.
    A. G. Vasilyev, Yu. V. Kolkovsliy, Yu. A. Lontsevoy, Microwave Transistors Based on Wide-Gap Semiconductors (Tekhnosfera, Moscow, 2011) [in Russian].Google Scholar
  7. 7.
    O. Yilmasoglu, K. Mutamba, D. Pavlidis, T. Karaduman, “First observation of bias oscillations in GaN Gunn diodes on GaN substrate,” IEEE Trans. Electron Devices 55, No. 6, 1563 (2008). DOI: 10.1109/TED.2008.921253.CrossRefGoogle Scholar
  8. 8.
    V. N. Sheremet, “Formation peculiarities and electro-physical properties of ohmic contacts to gallium nitride (review),” Optical Electronics and Semiconductor Devices 44, 41 (2009).MathSciNetGoogle Scholar
  9. 9.
    S. Noor Mohammad, “Contact mechanisms and design principles for alloyed ohmic contacts to n-GaN,” J. Appl. Phys. 95, No. 12, 7940 (2004). DOI: 10.1063/1.1712016.CrossRefGoogle Scholar
  10. 10.
    T. D. Tretyakov, Solid-Phase Reactions (Khimiya, Moscow, 1978) [in Russian].Google Scholar
  11. 11.
    Markus Pidun, Peter Karduck, Joachim Mayer, Klaus Heime, Bernd Schineller, Thomas Walther, “Auger depth profile analysis and EFTEM analysis of annealed Ti/Al-contacts on Si-doped GaN,” Appl. Surface Sci. 179, No. 1–4, 213 (2001). DOI: 10.1016/S0169-4332(01)00282-3.CrossRefGoogle Scholar
  12. 12.
    V. S. Fomenko, Emission Properties of Materials. Reference Book (Naukova Dumka, Kyiv, 1981) [in Russian].Google Scholar
  13. 13.
    A. E. Belyaev, N. S. Boltovets, V. N. Ivanov, L. M. Kapitanchuk, V. P. Kladko, R. V. Konakova, Ya. Ya. Kudryk, A. V. Kuchuk, O. S. Lytvyn, V. V. Milenin, V. N. Sheremet, Yu. N. Sveshnikov, “Development of high-stable contact systems to gallium nitride microwave diodes,” Semicond. Phys. Quantum Electron. Optoelectron. 10, No. 4, 1 (2007), http://journal-spqeo.org.ua/n4-2007/v10n4-07-p01-08.pdf.Google Scholar
  14. 14.
    A. V. Sachenko, A. E. Belyaev, N. S. Boltovets, Yu. V. Zhilyaev, V. P. Klad’ko, R. V. Konakova, Ya. Ya. Kudryk, V. N. Panteleev, V. N. Sheremet, “Resistance formation mechanisms for contacts to n-GaN and n-AlN with high dislocation density,” Phys. Status Solidi (C) 10, No. 3, 498 (2013). DOI: 10.1002/pssc.201200530.CrossRefGoogle Scholar
  15. 15.
    Yu. V. Zhilyaev, S. N. Rodin, “Chloride vapor-phase epitaxy of gallium nitride at a reduced source temperature,” Tech. Phys. Lett. 36, No. 5, 397 (2010). DOI: 10.1134/S1063785010050020.CrossRefGoogle Scholar
  16. 16.
    A. V. Sachenko, A. E. Belyaev, N. S. Boltovets, Yu. V. Zhilyaev, L. M. Kapitanchuk, V. P. Klad’ko, R. V. Konakova, Ya. Ya. Kudryk, A. V. Kuchuk, A. V. Naumov, V. V. Panteleev, V. N. Sheremet, “Investigation of resistance formation mechanisms for contacts to n-AlN and n-GaN with a high dislocation density,” Semicond. Phys. Quantum Electron. Optoelectron. 15, No. 4, 351 (2012), http://journal-spqeo.org.ua/n4-2012/v15n4-2012-p351-357.pdf.Google Scholar
  17. 17.
    V. V. Basanets, N. S. Boltovets, A. V. Gutsul, A. V. Zorenko, V. G. Ral’chenko, A. E. Belyaev, V. P. Klad’ko, R. V. Konakova, Ya. Ya. Kudrik, A. V. Kuchuk, V. V. Milenin, “Integrated microwave (centimeter-range) modulator on polycrystalline diamond layers,” Tech. Phys. 58, No. 3, 420 (2013). DOI: 10.1134/S1063784213030055.CrossRefGoogle Scholar
  18. 18.
    V. G. Ralchenko, A. V. Saveliev, A. F. Popovich, I. I. Vlasov, S. V. Voronina, E. E. Ashkinazi, “CVD diamond coating of AlN ceramic substrates to enhance heat removal,” Russian Microelectronics 35, No. 4, 205 (2006). DOI: 10.1134/S1063739706040019.CrossRefGoogle Scholar
  19. 19.
    R. E. Harper, C. Johnston, P. R. Chalker, D. Totterdell, I. M. Buckley-Golder, M. Werner, E. Obermeier, M. Van Rossum, “Contacts to doped and undoped polycrystalline diamond films,” Diamond Relat. Mater. 1, No. 5–6, 692 (1992). DOI: 10.1016/0925-9635(92)90193-R.CrossRefGoogle Scholar
  20. 20.
    F. M. Wang, M. W. Chen, Q. B. Lai, “Metallic contacts to nitrogen and boron doped diamond-like carbon films,” Thin Solid Films 518, No. 12, 3332 (2010). DOI: 10.1016/j.tsf.2009.10.041.CrossRefGoogle Scholar
  21. 21.
    P. Muret, F. Pruvost, C. Saby, E. Lucazeau, T. A. Nguyen Tan, E. Gheeraert, A. Deneuville, “Carbide contacts on homoepitaxial diamond films,” Diamond Relat. Mater. 8, No. 2–5, 961 (1999). DOI: 10.1016/S0925-9635(98)00380-X.CrossRefGoogle Scholar
  22. 22.
    T. V. Blank, Yu. A. Goldberg, O. V. Konstantinov, V. G. Nikitin, E. A. Posse, “Peculiarities in the mechanism of current flow through an ohmic contact to gallium phosphide,” Tech. Phys. Lett. 30, No. 10, 806 (2004). DOI: 10.1134/1.1813716.CrossRefGoogle Scholar
  23. 23.
    T. V. Blank, Yu. A. Gol’dberg, O. V. Konstantinov, V. G. Nikitin, E. A. Posse, “The mechanism of current flow in an alloyed In-GaN ohmic contact,” Semiconductors 40, No. 10, 1173 (2006). DOI: 10.1134/S1063782606100095.CrossRefGoogle Scholar
  24. 24.
    A. E. Belyaev, N. S. Boltovets, R. V. Konakova, Ya. Ya. Kudryk, A. V. Sachenko, V. N. Sheremet, A. O. Vinogradov, “Temperature dependence of contact resistance for Au-Ti-Pd2Si-n+ Si ohmic contacts subjected to microwave irradiation,” Semiconductors 46, No. 3, 330 (2012). DOI: 10.1134/S1063782612030074.CrossRefGoogle Scholar
  25. 25.
    A. V. Sachenko, A. E. Belyaev, A. V. Bobyl, N. S. Boltovets, V. N. Ivanov, L. M. Kapitanchuk, R. V. Konakova, Ya. Ya. Kudryk, V. V. Milenin, S. V. Novitskii, D. A. Sakseev, I. S. Tarasov, V. N. Sheremet, M. A. Yagovkina, “Temperature dependence of the contact resistance of ohmic contacts to III–V compounds with a high dislocation density,” Semiconductors 46, No. 3, 334 (2012). DOI: 10.1134/S1063782612030177.CrossRefGoogle Scholar
  26. 26.
    A. V. Sachenko, A. E. Belyaev, N. S. Boltovets, R. V. Konakova, Ya. Ya. Kudryk, S. V. Novitskii, V. N. Sheremet, J. Li, S. A. Vitusevich, “Mechanism of contact resistance formation in ohmic contacts with high dislocation density,” J. Appl. Phys. 111, No. 8, 083701 (2012). DOI: 10.1063/1.3702850.Google Scholar
  27. 27.
    A. V. Sachenko, A. E. Belyaev, N. S. Boltovets, A. O. Vinogradov, L. M. Kapitanchuk, R. V. Konakova, V. P. Kostylyov, Ya. Ya. Kudryk, V. P. Kladko, V. N. Sheremet, “The mechanism of contact-resistance formation on lapped n-Si surfaces,” Semiconductors 47, No. 3, 449 (2013). DOI: 10.1134/S1063782613030238.CrossRefGoogle Scholar
  28. 28.
    S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (John Wiley & Sons, 2007).Google Scholar
  29. 29.
    E. H. Rhoderick, R. H. Williams, Metal-Semiconductor Contacts, 2nd ed. (Clarendon Press, Oxford, 1988).Google Scholar
  30. 30.
    V. N. Sheremet, “Effect of microwave treatment on current flow mechanism in ohmic contacts to GaN,” Semicond. Phys. Quantum Electron. Optoelectron. 16, No. 3 (2013).Google Scholar
  31. 31.
    V. N. Sheremet, V. S. Zhigunov, Yu. V. Zhilyaev, “Current flow mechanisms of ohmic contacts to AlN,” in Proc. of Young Scientists Conf. on Semiconductor Physics “Lashkaryovs Readings 2013,” 2–4 April 2013, Kyiv, Ukraine (Kyiv, 2013), pp. 251–253.Google Scholar
  32. 32.
    A. E. Belyaev, N. S. Boltovets, V. N. Ivanov, V. P. Klad’ko, R. V. Konakova, Ya. Ya. Kudrik, A. V. Kuchuk, V. V. Milenin, Yu. N. Sveshnikov, V. N. Sheremet, “Mechanism of dislocation-governed charge transport in Schottky diodes based on gallium nitride,” Semiconductors 42, No. 6, 689 (2008). DOI: 10.1134/S1063782608060092.CrossRefGoogle Scholar
  33. 33.
    V. N. Sheremet, “Metrological aspects of measuring resistance of Ohmic contacts,” Radioelectron. Commun. Syst. 53, No. 3, 119 (2010). DOI: 10.3103/S0735272710030015.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • V. N. Sheremet
    • 1
  1. 1.V. E. Lashkaryov Institute of Semiconductor Physics of NAS of UkraineKyivUkraine

Personalised recommendations