Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Activated Carbon as Sorbents for Treatment of Pharmaceutical Wastewater (Review)

  • 14 Accesses

Abstract

This review summarizes the latest developments on the use of activated carbon adsorbents of various geneses for the adsorption of the most common pharmaceuticals in wastewater.

This is a preview of subscription content, log in to check access.

REFERENCES

  1. 1

    Osorio, V., Larrañaga, A., Aceña, J., Pérez, S., and Barceló, D., Sci. Total Environ., 2016, vol. 540, p. 267.

  2. 2

    Ebele, A.J., Abdallah, M.A.E., and Harrad, S., Emerging Contam., 2017, vol. 3, no. 1, p. 1.

  3. 3

    López-Serna, R., Petrovic, M., and Barceló, D., Chemosphere, 2011, vol. 85, no. 8, p. 1390.

  4. 4

    McEachran, A.D., Shea, D., Bodnar, W., and Nichols, E.G., Environ. Toxicol. Chem., 2016, vol. 35, no. 4, p. 898.

  5. 5

    Aus der Beek, T., Weber, F.-A., Bergmann, A. Hickmann, S., Ebert, I., Hein, A., and Küster, A., Environ. Toxicol. Chem., 2016, vol. 35, no. 4, p. 823.

  6. 6

    Jurado, A., Vàzquez-Suñé, E., Carrera, J., López de Alda, M., Pujades, E., and Barceló, D., Sci. Total Environ., 2012, vol. 440, p. 82.

  7. 7

    Yang, Y., Ok, Y.S., Kim, K.H., Kwon, E.E., and Tsang, Y.F., Sci. Total Environ., 2017, vol. 596, p. 303.

  8. 8

    Simazaki, D., Kubota, R., Suzuki, T., Akiba, M., Nishimura, T., and Kunikane, S., Water Res., 2015, vol. 76, p. 187.

  9. 9

    Petrie, B., Barden, R., and Kasprzyk-Hordern, B., Water Res., 2015, vol. 72, p. 3.

  10. 10

    Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., and Wang, X.C., Sci. Total Environ., 2014, vol. 473, p. 619.

  11. 11

    Salgado, R., Marques, R., Noronha, J.P., Carvalho, G., Oehmen, A., and Reis, M.A.M., Environ. Sci. Pollut. Res., 2012, vol. 19, no. 5, p. 1818.

  12. 12

    Santos, L.H., Araújo, A.N., Fachini, A., Pena, A., Delerue-Matos, C., and Montenegro, M.C.B.S.M., J. Hazard. Mater., 2010, vol. 175, nos. 1–3, p. 45.

  13. 13

    Tiwari, B., Sellamuthu, B., Ouarda, Y., Drogui, P., Tyagi, R.D., and Buelna, G., Bioresour. Technol., 2017, vol. 224, p. 1.

  14. 14

    Stuart, M., Lapworth, D., Crane, E., and Hart, A., Sci. Total Environ., 2012, vol. 416, p. 1.

  15. 15

    Du, B., Price, A.E., Scott, W.C., Kristofco, L.A., Ramirez, A.J., Chambliss, C.K., Yelderman, J.C., and Brooks, B.W., Sci. Total Environ., 2014, vol. 466, p. 976.

  16. 16

    Fernández-López, C., Guillén-Navarro, J.M., Padilla, J.J., and Parsons, J.R., Ecol. Eng., 2016, vol. 95, p. 811.

  17. 17

    Zhou, S., Xia, Y., Li, T., Yao, T., Shi, Z., Zhu, S., and Gao, N., Environ. Sci. Pollut. Res., 2016, vol. 23, no. 16, p. 16448.

  18. 18

    Heberer T., Toxicol. Lett., 2002, vol. 131, no. 1, p. 5.

  19. 19

    Heberer T., J. Hydrol., 2002, vol. 266, no. 3, p. 175.

  20. 20

    Bhatnagar A., Sillanpää M., and Witek-Krowiak A., Chem. Eng. J., 2015, vol. 270, p. 244.

  21. 21

    Gautam, R.K., Mudhoo, A., Lofrano, G., and Chattopadhyaya, M.C., J. Environ. Chem. Eng., 2014, vol. 2, no. 1, p. 239.

  22. 22

    Ali, I., Asim, M., and Khan, T.A., J. Environ. Manage., 2012, vol. 113, p. 170.

  23. 23

    Sophia, A.C. and Lima, E.C., Ecotoxicol. Environ. Saf., 2018, vol. 150, p. 1.

  24. 24

    Dordio, A.V., Miranda, S., Ramalho, J.P., and Palace Carvalho, A.J., J. Hazard. Mater., 2016, vol. 323, p. 575.

  25. 25

    Ali, M.E., El-Aty, A.M.A., Badawy, M.I., and Rizka, K.A., Ecotoxicol. Environ. Saf., 2018, vol. 151, p. 144.

  26. 26

    Arya, V. and Philip, L., Microporous Mesoporous Mater., 2016, vol. 232, p. 273.

  27. 27

    Berthod, L., Whitley, D.C., Roberts, G., Sharpe, A., Greenwood, R., and Mills, G.A., Sci. Total Environ., 2017, vol. 579, p. 1512.

  28. 28

    Ciesielczyk, F., Goscianska, J., Zdarta, J., and Jesionowski, T., Colloids Surf., A, 2018, vol. 545, p. 39.

  29. 29

    dos Reis, G.S., Sampaio, C.H., Lima, E.C., and Wilhelm, M., Colloids Surf., A, 2016, vol. 497, p. 304.

  30. 30

    Razanajatovo, R.M., Ding, J., Zhang, S., and Jiang, H.Z., Mar. Pollut. Bull., 2018, vol. 136, p. 516.

  31. 31

    Liu, J., Zhou, D., Xu, Z., and Zheng, S., Environ. Pollut., 2017, vol. 226, p. 379.

  32. 32

    Lozano-Morales, V., Gardi, I., Nir, S., and Undabeytia, T., J. Cleaner Prod., 2018, vol. 190, p. 703.

  33. 33

    Nielsen, L. and Bandosz, T.J., Chem. Eng. J., 2015, vol. 287, p. 139.

  34. 34

    Lofrano, G., Emerging Compounds Removal from Wastewater: Natural and Solar Based Treatments, New York: Springer-Verlag, 2012, p. 15.

  35. 35

    DeGisi, S., Lofrano, G., Grassi, M., and Notarnicola, M., SustainableMater. Technol., 2016, vol. 9, p. 10.

  36. 36

    Vedenyapina, M.D., Kryazhev, Yu.G., Raiskaya, E.A., Kulaishin, S.A., Vedenyapin, A.A., and Lapidus, A.L., Solid Fuel Chem., 2017, vol. 51, no. 4, p. 229.

  37. 37

    Zhao, Y., Choi, J.W., Bediako, J.K., Song, M.-H., Lin, S., Cho, C.W., and Yun, Y.-S., J. Hazard. Mater., 2018, vol. 360, p. 529.

  38. 38

    Bahamon, D. and Vega, L.F., in Computer Aided Chemical Engineering, Amsterdam: Elsevier, 2017, vol. 40, p. 2695.

  39. 39

    Bispo, M.D., Schneider, J.K., da Silva, O.D., Tomasini, D., Maciel, G.P.S., Schena, T., Onorevoli, B., Bjerk, T.R., Jacques, R.A., Krause, L.C., and Caramao, E.B., J. Environ. Chem. Eng., 2018, vol. 6, no. 2, p. 2743.

  40. 40

    Dwivedi, K., Morone, A., Chakrabarti, T., and Pandey, R.A., J. Environ. Chem. Eng., 2018, vol. 6, no. 3, p. 3681.

  41. 41

    Guedidi, H., Reinert, L., Soneda, Y., Bellakhal, N., and Duclaux, L., Arab. J. Chem., 2017, vol. 10, p. 3584.

  42. 42

    de Franco, M.A.E., de Carvalho, C.B., Bonetto, M.M., de Pelegrini Soares, R., and Féris, L.A., J. Cleaner Prod., 2018, vol. 181, p. 145.

  43. 43

    Sbardella, L., Comas, J., Fenu, A., Rodriguez-Roda, I., and Weemaes, M., Sci. Total Environ., 2018, vol. 636, p. 519.

  44. 44

    Sotelo, J.L., Ovejero, G., Rodríguez, A., Álvarez, S., Galán, J., and García, J., Chem. Eng. J., 2014, vol. 240, p. 443.

  45. 45

    Hu, J., Shang, R., Heijman, B., and Rietveld, L., Chemosphere, 2016, vol. 150, p. 49.

  46. 46

    Mailler, R., Gasperi, J., Coquet, Y., Derome, C., Buleté, A., Vulliet, E., Bressy, A., Varrault, G., Chebbo, G., and Rocher, V., J. Environ. Chem. Eng., 2016, vol. 4, no. 1, p. 1102.

  47. 47

    Alves, T.C., Cabrera-Codony, A., Barceló, D., Rodriguez-Mozaz, S., Pinheiro, A., and Gonzalez-Olmos, R., Water Res., 2018, vol. 144, p. 402.

  48. 48

    Marques, S. C., Mestre, A. S., Machuqueiro, M., Gotvajn, A.Z., Marinšek, M., and Carvalho, A.P., Chem. Eng. J., 2018, vol. 345, p. 669.

  49. 49

    Kasperiski, F.M., Lima, E.C., Umpierres, C.S., dos Reis, G.S., Thue, P.S., Lima, D.R., Dias, S.L.P., Saucier, C., and da Costa, J.B., J. Cleaner Prod., 2018, vol. 197, p. 919.

  50. 50

    Wong, S., Ngadi, N., Inuwa, I.M., and Hassan, O., J. Cleaner Prod., 2018, vol. 175, p. 361.

  51. 51

    Acosta, R., Fierro, V., de Yuso, A.M., Nabarlatz, D., and Celzard, A., Chemosphere, 2016, vol. 149, p. 168.

  52. 52

    Kan, Y., Yue, Q., Li, D., Wu, Y., and Gao, B., J. Taiwan Inst. Chem. Eng., 2017, vol. 71, p. 494.

  53. 53

    Wong, S., Lee, Y., Ngadi, N., Inuwa, I.M., and Mohamed, N.B., Chin. J. Chem. Eng., 2018, vol. 26, no. 5, p. 1003.

  54. 54

    Martins, A. C., Pezoti, O., Cazetta, A. L., Bedin, K.C., Yamazaki, D.A.S., Bandoch, G.F.G., Asefa, T., Visentainer, J.V., and Almeida, V.C., Chem. Eng. J., 2015, vol. 260, p. 291.

  55. 55

    Marzbali M.H., Esmaieli M., Abolghasemi H., and Marzbali M.H., Process Saf. Environ. Prot., 2016, vol. 102, p. 700.

  56. 56

    Torrellas, S.Á., Lovera, R.G., Escalona, N., Sepúlveda, C., Sotelo, J.L., and García, J., Chem. Eng. J., 2015, vol. 279, p. 788.

  57. 57

    Zhang, D., Yin J., and Zhao J., J. Environ. Chem. Eng., 2015, vol. 3, no. 3, p. 1504.

  58. 58

    Mukoko, T., Mupa, M., and Guyo, U., J. Environ. Anal. Toxicol., 2015, vol. 7, no. 8, p. 1.

  59. 59

    Comber, S., Gardner, M., Sörme, P. and Ellor, B., Sci. Total Environ., 2019, vol. 676, p. 222.

  60. 60

    Petrovic, M., Hernando, D., Díaz-Cruz, S., and Barceló, D., J. Chromatogr., 2005, vol. 1067, nos. 1–2, p. 1.

  61. 61

    Carvalho, A.P., Mestre, A.S., Haro, M., and Ania, C.O., Acetaminophen: Properties, Clinical Uses and Adverse Effects, Hauppauge, NY: Nova Science, 2012, p. 57.

  62. 62

    Gómez, M.J., Bueno, M.J., Lacorte, S., Fernández-Alba, A.R., and Agüera, A., Chemosphere, 2007, vol. 66, no. 6, p. 993.

  63. 63

    Gracia-Lor, E., Sancho, J.V., and Hernández, F., J. Chromatogr., 2011, vol. 1218, no. 16, p. 2264.

  64. 64

    Spessato, L., Bedin, K.C., Cazetta, A.L., Souza, I.P.A.F., Duarte, V.A., Crespo, L.H.S., Silva, M.C., Pontes, R.M., and Almeida, V.C., J. Hazard. Mater., 2019, vol. 371, p. 499.

  65. 65

    Galhetas, M., Mestre, A.S., Pinto, M.L., Gulyurtlu, I., Lopes, H., and Carvalho, A.P., Chem. Eng. J., 2014, vol. 240, p. 344.

  66. 66

    Batista, M.K., Mestre, A.S., and Matos, I., RSC Adv., 2016, vol. 6, no. 51, p. 45419.

  67. 67

    Galhetas, M., Mestre, A.S., Pinto, M.L., Gulyurtlu, I., Lopes, H., and Carvalho, A.P., J. Colloid Interface Sci., 2014, vol. 433, p. 94.

  68. 68

    Rossner, A., Snyder, S.A., and Knappe, D.R.U., Water Res., 2009, vol. 43, p. 3787.

  69. 69

    Lladó, J., Solé-Sardans, M., Lao-Luque, C., Fuente, E., and Ruiz, B., Process Saf. Environ. Prot., 2016, vol. 104, p. 294.

  70. 70

    Marques, S.C., Marcuzzo, J.M., Baldan, M.R., Mestre, A.S., and Carvalho, A.P., Chem. Eng. J., 2017, vol. 321, p. 233.

  71. 71

    Lladó, J., Lao-Luque, C., Ruiz, B., Fuente, E., Solé-Sardans, M., and Dorado, A.D., Process Saf. Environ. Prot., 2015, vol. 95, p. 51.

  72. 72

    Moreno-Castilla, C., Carbon, 2004, vol. 42, p. 83.

  73. 73

    Buser, H.R., Poiger, T., and Müller, M.D., Environ. Sci. Technol., 1998, vol. 32, no. 22, p. 3449.

  74. 74

    Álvarez-Torrellas, S., Munoz, M., Gläsel, J., de Ped-ro, Z.H., Domínguez, C.M., García, J., Etzold, B.J.M., and Casas, J.A., Chem. Eng. J., 2018, vol. 347, p. 595.

  75. 75

    Giles, C.H., MacEwan, T.H., Nakhwa, S.N., and Smith, D., J. Chem. Soc., 1960, vol. 14, p. 3973.

  76. 76

    Álvarez-Torrellas, S., Rodríguez, A., Ovejero, G., and García, J., Chem. Eng. J., 2018, vol. 283, p. 936.

  77. 77

    Presser, V., Heon, M., and Gogotsi, Y., Adv. Funct. Mater., 2011, vol. 21, p. 810.

  78. 78

    Mirzaei, A., Ebadi, A., and Khajavi, P., Chem. Eng. J., 2013, vol. 231, p. 550.

  79. 79

    Bhadra, B.N., Seo, P.W., and Jhung, S.H., Chem. Eng. J., 2016, vol. 301, p. 27.

  80. 80

    Wei, H., Deng, S., Huang, Q., Nie, Y., Wang, B., Huang, J., and Yu, G., Water Res., 2013, vol. 47, no. 12, p. 4139.

  81. 81

    Hu, X. and Cheng, Z., Chin. J. Chem. Eng., 2015, vol. 23, p. 1551.

  82. 82

    Rakić, V., Rac, V., Krmar, M., Otman, O., and Auroux, A., J. Hazard. Mater., 2015, vol. 282, p. 141.

  83. 83

    Kårelid, V., Larsson, G., and Bjorlenius, B., J. Environ. Manage., 2017, vol. 193, p. 163.

  84. 84

    Clara, M., Strenn, B., and Kreuzinger, N., Water Res., 2004, vol. 38, p. 947.

  85. 85

    Bahlmann, A., Carvalho, J.J., Weller, M.G., Panne, U., and Schneider, R.J., Chemosphere, 2012, vol. 89, p. 1278.

  86. 86

    Bahlmann, A., Brack, W., Schneider, R.J., and Krauss, M., Water Res., 2014, vol. 57, p. 104.

  87. 87

    Álvarez-Torrellas, S., Peres, J.A., Gil-Álvarez, V., Ovejero, G., and García, J., Chem. Eng. J., 2017, vol. 320, p. 319.

  88. 88

    Ersan, G., Kaya, Y., Apul, O.G., and Karanfil, T., Sci. Total Environ., 2016, vol. 565, p. 811.

  89. 89

    Wang, S.G., Liu, X.W., Gong, W.X., Nie, W., Gao, B.Y., and Yue, Q.Y., J. Chem. Technol. Biotechnol., 2007, vol. 82, p. 698.

  90. 90

    Calisto, V., Jaria, G., Silva, C.P., Ferreira, I.A., Otero, M., and Esteves, V.I., J. Environ. Manage., 2017, vol. 192, p. 15.

  91. 91

    Ncibi, M.C. and Sillanpää, M., J. Mol. Liq., 2017, vol. 238, p. 379.

  92. 92

    Fane, A.G., Schaefer, A.I., and Waite, T.D., Nanofiltration: Principles and Applications, New York, NY: Elsevier, 2004, p. 147.

  93. 93

    Punyapalaku, P. and Sitthisornand, T., World Acad. Sci. Eng. Technol., 2010, vol. 69, p. 546.

  94. 94

    Loftsson, T., Sigursson, H.H., Konrasdottir, F., Gisladottir, S., Jansook, P., and Stefansson, E., Pharmazie, 2008, vol. 63, no. 3, p. 171.

  95. 95

    Liu, Z., Zhou, X., Chen, X., Dai, C., Zhang, J., and Zhang, Y., J. Environ. Sci., 2013, vol. 25, no. 12, p. 2384.

  96. 96

    Li, Z.H., Hong, H., Liao, L., Ackley, C.J., Schulz, L.A., MacDonald, R.A., Mihelich, A.L., and Emard, S.M., Colloids Surf., B, 2011, vol. 88, no. 1, p. 339.

  97. 97

    Li, H., Zhang, D., Han, X., and Xing, B., Chemosphere, 2014, vol. 95, p. 150.

  98. 98

    Oliveira, G., Calisto, V., Santos, S.M., and Otero, V.I., Sci. Total Environ., 2018, vol. 631, p. 1018.

  99. 99

    He, L., Sun, X., Zhu, F., Ren, S., and Wang, S., Sci. Total Environ., 2017, vol. 592, p. 33.

  100. 100

    Yang, H., Zhou, M., Yang, W., Ren, G., and Ma, L., Chemosphere, 2018, vol. 206, p. 439.

  101. 101

    Verenitch, S.S., Lowe, C.J., and Mazumder, A., J. Chromatogr., A, 2006, vol. 1116, no. 1, p. 193.

  102. 102

    Murray, K.E., Thomas, S.M., and Bodour, A.A., Environ. Pollut., 2010, vol. 158, no. 12, p. 3462.

  103. 103

    Kosma, C.I., Lambropoulou, D.A., and Albanis, T.A., Sci. Total Environ., 2014, vol. 466, p. 421.

  104. 104

    Rakić, V., Rajić, N., Daković, A., and Auroux, A., Microporous Mesoporous Mater., 2012, vol. 166, p. 185.

  105. 105

    Feng, L., van Hullebusch, E.D., Rodrigo, M.A., Esposito, G., and Oturan, M.A., Chem. Eng. J., 2013, vol. 228, p. 944.

  106. 106

    Bianchi, C.L., Sacchi, B., Capelli, S., Pirola, C., Cerrato, G., Morandi, S., and Capucci, V., Environ. Sci. Pollut. Res., 2018, vol. 25, no. 21, p. 20348.

  107. 107

    Ismail, M.M., Essam, T.M., Ragab, Y.M., El-Sayed, A.E., and Mourad, F.E., Bioresour. Technol., 2017, vol. 232, p. 364.

  108. 108

    Mui, E.L.K., Cheung, W.H., Valiz, M., and McKay, G., J. Colloid Interface Sci., 2010, vol. 347, p. 290.

  109. 109

    Valix, M., Cheung, W.H., and McKay, G., Longmuir, 2006, vol. 22, no. 10, p. 4574.

  110. 110

    Vedenyapina, M.D., Rakishev, A.K., Tsaplin, D.E., Vedenyapin, A.A., and Lapidus, A.L., Solid Fuel Chem., 2018, vol. 52, no. 3, p. 179.

  111. 111

    Raoul, T.T.D., Gabche, A.S., Ndifor-Angwafor, N.G., and Mbadcam, K.J., Int. J. Curr. Eng. Technol., 2015, vol. 5, no. 3, p. 1641.

  112. 112

    Mathers, J.J., Flick, S.C., and Cox, L.A., Jr., Environ. Int., 2011, vol. 37, p. 991.

  113. 113

    Gao, P., Mao, D., Luo, Y., Wang, L., Xu, B., and Xu, L., Water Res., 2012, vol. 46, no. 7, p. 2355.

  114. 114

    Lin, A.Y., Yu, T., and Lateef, S.K., J. Hazard. Mater., 2009, vol. 167, no. 1, p. 1163.

  115. 115

    Stackelberg, P.E., Gibs, J., Furlong, E.T., Meyer, M.T., Zaugg, S.D., and Lippincott, R.L., Sci. Total Environ., 2007, vol. 377, no. 2, p. 255.

  116. 116

    Batt, A.L., Kim, S., and Aga, D.S., Chemosphere, 2007, vol. 68, p. 428.

  117. 117

    Ternes, T.A., Meisenheimer, M., McDowell, D., Sacher, F., Brauch, H., Haist-Gulde, B., Preuss, G., Wilme, U., and Zulei-Seibert, N., Environ. Sci. Technol., 2002, vol. 36, no. 17, p. 3855.

  118. 118

    Liu, H., Wang, X., and Zhai, G., Chem. Eng J., 2012, vol. 209, p. 155.

  119. 119

    Hameed, B.H., J. Hazard. Mater., 2009, vol. 161, no. 2, p. 753.

  120. 120

    Ocampo-Pérez, R., Leyva-Ramos, R., Rivera-Utrilla, J., Flores-Cano, J.V., and Sánchez-Polo, M., Chem. Eng. Res. Des., 2015, vol. 104, p. 579.

  121. 121

    Ocampo-Pérez, R., Rivera-Utrilla, J., Méndez-Díaz, J.D., and Sánchez-Polo, M., J. Colloid Interface Sci., 2012, vol. 385, no. 1, p. 174.

  122. 122

    Leyva-Ramos, R. and Geankoplis, C.J., Can. J. Chem. Eng., 1994, vol. 72, no. 2, p. 262.

  123. 123

    Poling, B.E., Prausnitz, J.M., and O’Connell, J.P., The Properties of Gases and Liquids, New York: McGraw-Hill, 2006, 5th ed.

  124. 124

    Wu, F.C., Tseng, R.L., and Juang, R.S., Chem. Eng. J., 2009, vol. 153, no. 1, p. 1.

  125. 125

    Weber, W.J. and Morris, J.C., in Proc. Int. Conf. on Water Pollution Symp., Oxford: Pergamon, 1962, vol. 2, p. 231.

  126. 126

    Choi, K.J., Kim, S.G., and Kim, S.H., Environ. Technol., 2008, vol. 29, no. 3, p. 333.

  127. 127

    Weber, W.J. and Morris, J.C., J. Sanit. Eng. Div., 1963, vol. 89, no. 2, p. 31.

  128. 128

    Korzh, E.A. and Klimenko, N.A., Probl. Sovrem. Nauki Obraz., 2017, no. 5, p. 7.

  129. 129

    Li, G., Zhang, D., Wang, M., Huang, J., and Huang, L., Ecotoxicol. Environ. Saf., 2013, vol. 98, p. 273.

Download references

Funding

This study was carried out within the frameworks of State assignments for the Institute of Organic Chemistry, Russian Academy of Sciences, and Center for New Chemical Technologies, Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, in accordance with Program of Fundamental Research of State academies of sciences for 2013–2020 in research fields V.46 (state registration no. AAAA-A17-117040310050-4 in Unified State Information System for Registration of Research, Research and Development (R&D), and Technological Activities for Civil Use) and V .45, project V.45.2.8 (state registration no. AAAA-A19-119050790074-9 in Unified State Information System for Registration of Research, Research and Development (R&D), and Technological Activities for Civil Use).

Author information

Correspondence to M. D. Vedenyapina or A. Yu. Kurmysheva or A. K. Rakishev or Yu. G. Kryazhev.

Additional information

Translated by O. Kadkin

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vedenyapina, M.D., Kurmysheva, A.Y., Rakishev, A.K. et al. Activated Carbon as Sorbents for Treatment of Pharmaceutical Wastewater (Review). Solid Fuel Chem. 53, 382–394 (2019). https://doi.org/10.3103/S0361521919070061

Download citation

Keywords:

  • activated carbon
  • adsorption
  • sorbents
  • pharmaceutical
  • wastewater treatment