Advertisement

A Coordinate-Wise Estimate of the Reachability Set of a Controlled System

  • M. S. NikolskiiEmail author
Article
  • 12 Downloads

Abstract

The problem of a coordinate-wise estimate of the reachability set for nonlinear controlled systems is considered. Estimates of this kind are useful because they allow us at least in rough form to assess the dynamic possibilities of a controlled system.

Keywords

controlled system reachability set coordinatewise estimation comparison theorem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Matrosov, The Method of Vector Lyapunov Functions: Analysis of Dynamical Properties of Nonlinear Systems (Fizmatlit, Moscow, 2001) [in Russian].Google Scholar
  2. 2.
    V. V. Zaitsev, “Coordinatewise estimates of the reachability set of a dynamical system,” Differ. Uravn. 29, 575–584 (1993).Google Scholar
  3. 3.
    F. L. Chernous’ko, Estimation of Phase State ofDynamical Systems (Nauka, Moscow, 1988) [inRussian].Google Scholar
  4. 4.
    A. B. Kurzhanskii and I. Valyi, Ellipsoidal Calculus for Estimation and Control (Birkhauser, 1997).CrossRefzbMATHGoogle Scholar
  5. 5.
    M. I. Gusev, “On external estimations of reachability sets of nonlinear controlled systems,” Tr. Inst. Mat. Mekh. UrO RAN 17, 60–69 (2011).Google Scholar
  6. 6.
    E. K. Kostousova, “On polyhedral estimates of reachability sets of differential systems with bilinear uncertainty,” Tr. Inst.Mat. Mekh. UrO RAN 18 (4), 195–210 (2012).MathSciNetGoogle Scholar
  7. 7.
    L. S. Pontryagin et al., Mathematical Theory of Optimal Processes (Nauka, Moscow, 1969) [in Russian].Google Scholar
  8. 8.
    E. B. Lee and L. Markus, Foundations of Optimal Control Theory (Krieger, FL, 1986; Nauka, Moscow, 1972).zbMATHGoogle Scholar
  9. 9.
    A. F. Filippov, “On some questions of optimal control,” Vestn. Mosk. Univ., Ser. 1: Mat.Mekh., №2, 25–38 (1959).Google Scholar
  10. 10.
    L. S. Pontryagin, Ordinary Differential Equations (Nauka, Moscow, 1970; Elsevier, Amsterdam, 1962).zbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia

Personalised recommendations