Advertisement

Complexity of function systems over a finite field in the class of polarized polynomial forms

  • S. N. SeleznevaEmail author
  • M. M. Gordeev
Article
  • 16 Downloads

Abstract

The Shannon complexity of a function system over a q-element finite field which contains m functions of n variables in the class of polarized polynomial forms is exactly evaluated: L q PPF (n,m) = q n for all n ≥ 1, m ≥ 2, and all possible odd q. It has previously been known that L2PPF (n,m) = 2 n and L3PPF (n,m) = 3 n for all n ≥ 1 and m ≥ 2.

Keywords

function over a finite field function system polynomial form polarized polynomial form (PPF) complexity lower bound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Sasao and P. Besslich, “On the complexity of mod-2 sum PLA’s,” IEEE Trans. Comput. 39, 262–266 (1990).CrossRefGoogle Scholar
  2. 2.
    V. P. Suprun, “Complexity of boolean functions in the class of canonicalpolarized polynomials,” Diskretn. Mat. 5 (2), 111–115 (1993).MathSciNetGoogle Scholar
  3. 3.
    N. A. Peryazev, “Complexity of boolean functions in the class polynomial polarized forms,” Algebra Logika 34, 323–326 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    S. N. Selezneva, “On the complexity of the representation of functions of many-valued logics by polarized polynomials,” DiscreteMath. Appl. 12, 229–234 (2004).MathSciNetGoogle Scholar
  5. 5.
    S. N. Selezneva, “On the complexity of polarised polynomials of multi-valued logic functions in one variable,” DiscreteMath. Appl. 14, 263–266 (2004)].MathSciNetCrossRefGoogle Scholar
  6. 6.
    N. K. Markelov, “A lower estimate of the complexity of three-valued logic functions in the class of polarized polynomials,” Moscow Univ. Comput. Math. Cybern. 36, 150–154 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    S. N. Selezneva, “Complexity of systems of functions of Boolean algebra and systems of functions of threevalued logic in classes of polarized polynomial forms,” DiscreteMath. Appl. 26, 115–124 (2016).zbMATHGoogle Scholar
  8. 8.
    A. S. Balyuk and G. V. Yanushkovskii, “Upper estimates of the complexity of the function above the finite fields in Croneker form classes,” Izv. Irkutsk. Univ., Ser. Mat. 14, 3–17 (2015).Google Scholar
  9. 9.
    A. S. Balyuk and A. S. Zinchenko, “Lower estimate of the complexity of the function above the finite field of order 4 in the class of polarized polynomials,” Izv. Irkutsk. Univ., Ser.Mat. 16, 19–29 (2016).Google Scholar
  10. 10.
    A. S. Balyuk and A. S. Zinchenko, “Lower estimate of the complexity of 5-valued functions in the class of polarized polynomials,” Diskret.Mat. 28 (4), 29–37 (2016).MathSciNetCrossRefGoogle Scholar
  11. 11.
    S. V. Yablonskii, G. P. Gavrilov, and A. A. Nabebin, Predpolnye klassy v mnogoznachnykh logikakh (IzdvoMEI, Moscow, 1997).zbMATHGoogle Scholar
  12. 12.
    S. V. Yablonskii, Introduction to Discrete Mathematics (Vysshaya Shkola, Moscow, 2001; Mir, Moscow, 1989).Google Scholar
  13. 13.
    R. Lidl and G. Niederreiter, Finite Fields (Cambridge Univ. Press, Cambridge, 1985).zbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Department of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia

Personalised recommendations