Laguerre projection method for finite Hankel transform of arbitrary order

Article

Abstract

We propose a modification of the projection method for the problem of inverting finite Hankel transform of arbitrary order. In expanding the solution of an integral equation of the first kind, eigenfunctions corresponding to eigenvalues close to the multiple are replaced with Laguerre functions. These functions are eigenfunctions of Hankel transform on the half-line. Our test calculations demonstrated the effectiveness of the elaborated method.

Keywords

Hankel transform projection method Laguerre functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Denisov, Introduction to the Theory of Solution of Inverse Problems (Mosk. Gos. Univ., Moscow, 1994) [in Russian].Google Scholar
  2. 2.
    A. S. Krylov and A. V. Lyakishev, “On One Modification of the Projection Method for Solution of an Integral Equation of I Kind,” Prikl. Mat. Inform. (Mosk. Gos. Univ.), No. 6, 95–102 (2001).Google Scholar
  3. 3.
    R. Barakat, E. Parshall, and B. H. Sandler, “Zero-Order Hankel Transform Algorithms Based on Filon Quadrature Philosophy for Diffraction Optics and Beam Propagation,” J. Opt. Soc. Am., 652–659 (1998).Google Scholar
  4. 4.
    V. Magni, G. Cerullo, and S. De Silvestri, “High-Accuracy Fast Hankel Transform for Optical Beam Propagation,” J. Opt. Soc. Am., 2031–2033 (1992).Google Scholar
  5. 5.
    P. K. Gupta, S. Niwas, and N. Chaudhary, “Fast Computation of Hankel Transform Using Orthonormal Exponential Approximation of Complex Kernel Function,” J. Earth System Sci, No. 3, 267–276 (2006).Google Scholar
  6. 6.
    A. D. Chave, “Numerical Integration of Related HTs by Quadrature and Continued Fraction Expansion,” Geophysics 48, 1671–1686 (1983).CrossRefGoogle Scholar
  7. 7.
    W. E. Higgins and D. C. Munson, “A Hankel Transform Approach to Tomographic Image Reconstruction,” IEEE Trans. Med. Imag, 59–72 (1988).Google Scholar
  8. 8.
    P. K. Suetin, Classical Orthogonal Polynomials (Nauka, Moscow, 1976) [in Russian].Google Scholar
  9. 9.
    A. S. Krylov and M. M. Mizotin, “Projection Method for Hankel Transform,” Integr. Transforms Spec. Funct. (2010) (in press).Google Scholar
  10. 10.
    E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals (Clarendon, Oxford, 1948; Gostekhizdat, Moscow, 1948).Google Scholar
  11. 11.
    M. M. Mizotin, A. S. Krylov, and M. A. Spiridonov, “Application of the Projection Method for the Analysis of Structural Dependences of the Surface Layers of Melts,” Rasplavy, No. 5, 18–26 (2009).Google Scholar
  12. 12.
    M. A. Spiridonov, S. I. Popel, A. S. Krylov, et al., “The Short-Range Order in the Surface Layers of Cu-Au (Ge) Melts by Electron Diffraction,” J. Phys.: Conf. Ser. 98, 53–56 (2008).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2010

Authors and Affiliations

  1. 1.Department of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia

Personalised recommendations