Advertisement

An Analytical Review of Global Ecoinformatics Problems

  • I. I. PotapovEmail author
Article
  • 18 Downloads

Abstract

Modern global eco-dynamics problems are discussed. It is noted that global changes are mostly characterized by several key features, such as their multicomponent nature, as well as interactivity and nonlinearity. These features challenge various forecast estimates in such a way that the concept of forecasting has been replaced over the last few years by a much more ambiguous concept of scenarios. The vagueness of scenarios is due to the problem of global climate change. A global climate–nature–society system model is outlined.

Keywords

ecoinformatics global changes model society sustainable development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borisovich, A.E., Development of aquaculture as the most important direction of the fishery, Mezhdunar. Nauchn. Zh., 2013, no. 4, pp. 52–56.Google Scholar
  2. 2.
    Vernadskii, V.I., A few words about the noosphere, Usp. Sovrem. Biol.,1944, vol. 18, no. 2, pp. 49–93.Google Scholar
  3. 3.
    Krapivin, V.F., Teoretiko-igrovye metody sinteza slozhnykh sistem v konfliktnykh situatsiyakh (Game- Theoretical Methods of Synthesis of Complex Systems in Conflict Situations), Moscow: Sovetskoe radio, 1972.Google Scholar
  4. 4.
    Krapivin, V.F. and Kondrat’ev, K.Ya., Global’nye izmeneniya okruzhayushchei sredy: Ekoinformatika (Global Environmental Changes: Ecoinformatics), St. Petersburg: Izd. S.-Peterb. Gos. Univ., 2002.Google Scholar
  5. 5.
    Krapivin, V.F. and Potapov, I.I., Metody ekoinformatiki (Methods of Ecoinformatics), Moscow: Vseross. Inst. Nauchn. Tekh. Inf., 2002.Google Scholar
  6. 6.
    Krapivin, V.F., Mkrtchyan, F.A., and Shutko, A.M., GIMS-technology and mobile research platforms for remote sensing, Ekol. Sist. Prib., 2015, no. 1, pp. 10–17.Google Scholar
  7. 7.
    Krapivin, V.F., Potapov, I.I., and Soldatov, V.Yu., Risks of decision-making in the field of global eco-dynamics, Ekon. Prirodopol’z., 2017, no. 3, pp. 70–94.Google Scholar
  8. 8.
    Krapivin, V.F., Potapov, I.I., Shalaev, V.S., Burkov, V.D., and Soldatov, V.Yu., Indicators-precursors of the development of natural processes in forest, agroforestry and urban ecosystems, Probl. Okruzh. Sredy Prir. Resur., 2015, no. 4, pp. 81–95.Google Scholar
  9. 9.
    Krapivin, V.F., Shalaev, V.S., and Burkov, V.D., Modeling of global cycles of carbon and methane, Vestn. Mosk. Gos. Univ. Lesa, 2015, vol. 19, no. 1, pp. 170–178.Google Scholar
  10. 10.
    Krapivin, V.F., Shalaev, V.S., Burkov, V.D., and Soldatov, V.Yu., Search for indicators-precursors of the violation of natural processes in forest, agroforestry and urban ecosystems, Vestn. Mosk. Gos. Univ. Lesa, 2015, vol. 19, no. 1, pp. 162–169.Google Scholar
  11. 11.
    Nitu, K., Krapivin, V.F., and Potapov, I.I., Global’nyi klimat i problemy ustoichivogo razvitiya (Global Climate and Problems of Sustainable Development), Bukharest: Matrix Rom, 2017.Google Scholar
  12. 12.
    Reimers, N.F., Theorems of ecology, Nauka Zhizn’, 1992, no. 10, pp. 130–137.Google Scholar
  13. 13.
    Tarko, A.M., Antropogennye izmeneniya global’nykh biosfernykh protsessov (Anthropogenic Changes in Global Biosphere Processes), Moscow: Fizmatlit, 2005.Google Scholar
  14. 14.
    Tarko, A.M., Mathematical models of global and regional processes in the biosphere, Obshch. Prikl. Tsenol., 2007, no. 6, pp. 44–47.Google Scholar
  15. 15.
    Tarko, A.M., Determination of the role of the biosphere in compensating global warming with the help of the global carbon dioxide cycle model, Izv. Samar. Nauchn. Tsentra Ross. Akad. Nauk, 2009, vol. 11, nos. 1–7, pp. 1587–1591.Google Scholar
  16. 16.
    Tarko, A.M., A mathematical model of the global cycle of carbon in the biosphere, Zh. Obshch. Biol.,2010, vol. 71, no. 1, pp. 97–109.MathSciNetGoogle Scholar
  17. 17.
    Tarko, A.M. and Kuznetsova, M.V., A spatially distributed model of the global cycle of carbon in the biosphere, Mat. Model., 2001, no. 9, pp. 45–54.zbMATHGoogle Scholar
  18. 18.
    Forrester, D., Mirovaya dinamika (World Dynamics), Moscow: AST, 2006.Google Scholar
  19. 19.
    Kondratyev, K.Ya., Key aspects of global climate change, Energy Environ.,2004, vol. 15, no. 3, pp. 469–503.CrossRefGoogle Scholar
  20. 20.
    Krapivin, V.F. and Shutko, A.M., Information Technologies for Remote Monitoring of the Environment, Chichester, UK: Springer/Praxis, 2012.Google Scholar
  21. 21.
    Krapivin, V.F. and Varotsos, C.A., Modelling the CO2 atmosphere-ocean flux in the upwelling zones using radiative transfer tools, J. Atmos. Solar-Terr. Phys., 2016, vols. 150–151, pp. 47–54.CrossRefGoogle Scholar
  22. 22.
    Krapivin, V.F., Varotsos, C.A., and Soldatov, V.Yu., New Ecoinformatics Tools in Environmental Science: Applications and Decision-Making, London: Springer, 2015.CrossRefGoogle Scholar
  23. 23.
    Krapivin, V.F., Varotsos, C.A., and Soldatov, V.Yu., Simulation results from a coupled model of carbon dioxide and methane global cycles, Ecol. Modell., 2017, vol. 359, pp. 69–79.CrossRefGoogle Scholar
  24. 24.
    Meadows, D.H., Meadows, D.L., Randers, J., and Behrens, W.W., The Limits to Growth, New York: A Potomak Associates Book, 1972.Google Scholar
  25. 25.
    Soldatov, V.Yu. and Krapivin, V.F., Arctic basin and carbon dioxide cycle, The 32nd International Symposium on Okhotsk Sea & Polar Oceans, 2017, Mombetsu, pp. 333–336.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.All-Russia Institute of Scientific and Technical InformationRussian Academy of Sciences (VINITI RAS)MoscowRussia

Personalised recommendations