Scientific and Technical Information Processing

, Volume 41, Issue 5, pp 325–334 | Cite as

Group context-aware recommendation systems

  • A. V. Smirnov
  • N. G. Shilov
  • A. V. Ponomarev
  • A. M. Kashevnik
  • V. G. Parfenov
Article

Abstract

The architecture and basic models of a context-aware recommendation system based on collaborative filtering are proposed. The major problems in creating such systems are emphasized and methods for solving the problems are proposed. The advantages of the pre-filtering methods that are used to allow for context are substantiated. Basic processes of constructing recommendations are described. The proposed architecture is demonstrated using a recommendation system for an m-tourism application.

Keywords

recommendation systems collaborative filtering context ontology profile management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garcia, I., Sebastia, L., Onaindia, E., and Guzman, C.A., Group recommender system for tourist activities, Proc. 10th Int. Conf. “E-Commerce and Web Technologies” 2009, pp. 26–37.CrossRefGoogle Scholar
  2. 2.
    Moon, S.K., Simpson, T.W., and Kumara, S.R.T., An agent-based recommender system for developing customized families of products, J. Intell. Manufact., 2009, vol. 20, pp. 649–659.CrossRefGoogle Scholar
  3. 3.
    Chen, Y.-J., Chen, Y.-M., and Wu, M.-S., An expert recommendation system for product empirical knowledge consultation, ICCSIT2010: The 3rd IEEE Int. Conf. on Computer Science and Information Technology, 2010, pp. 23–27.Google Scholar
  4. 4.
    Shilov, N., Group recommending systems for configuration of flexible net organizations, in Informatsionnoupravlyayushchie sistemy (Information-Managing Systems), No. 5, St. Petersburg: Politekhnika, 2012.Google Scholar
  5. 5.
    McCarthy, K., Salamo, M., Coyole, L., McGinty, L., Smyth, B., and Nixon, P., Group recommender systems: A critiquing based approach, Proc. 11th Int. Conf. on Intelligent User Interfaces, 2006, pp. 267–269.Google Scholar
  6. 6.
    Adomavicius, G. and Tuzhilin, A., Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions, IEEE Trans. Knowl. Data Eng., 2005, vol. 17, pp. 734–749.CrossRefGoogle Scholar
  7. 7.
    Shilov, N., Problems of solution taking support at configuration of flexible net organizations, Trudy St. Petersburg. Issled. Inst. Ross. Akad. Nauk, 2012, no. 22, pp. 224–233.Google Scholar
  8. 8.
    Smirnov, A. and Shilov, N., Collaborative recommendation systems for PLM: Approach and technological frame-work, Proc. 8th Int. Product Lifecycle Management Conf. PLM11 2011, pp. 11–13.Google Scholar
  9. 9.
    Smirnov, A.V. and Shilov, N.G., Group recommendation systems for management of life cycle of articles: Approach and technologies, Izv. YuFU. Tekhn. Nauki, 2011, no. 5, pp. 203–206.Google Scholar
  10. 10.
    Baatarjav, E.-A., Phithakkitnukoon, S., and Dantu, R., Group recommendation system for facebook, Proc. on the Move to Meaningful Internet Systems Workshop, 2008, pp. 211–219.Google Scholar
  11. 11.
    Romesburg, H.C., Cluster Analysis for Researchers, California: Lulu, 2004, p. 340.Google Scholar
  12. 12.
    Flake, G.W., Lawrence, S., Giles, C.L., and Coetzee, F., Self-organization and identification of Web communities, IEEE Computer, 2002, vol. 35, no. 3, pp. 66–71.CrossRefGoogle Scholar
  13. 13.
    Baeza-Yates, R. and Ribeiro-Neto, B., Modern Information Retrieval. Addison-Wesley, 1999, p. 513.Google Scholar
  14. 14.
    Salton, G., Automatic Text Processing: The Transformation Analysis and Retrieval of Information by Computer, Addison-Wesley, 1989.Google Scholar
  15. 15.
    Belkin, N. and Croft, B., Information filtering and information retrieval, Commun. ACM, 1992, vol. 35, no. 12 (Sp. Num.), pp. 29–37.CrossRefGoogle Scholar
  16. 16.
    Adomavicius, G., Mobasher, B., Ricci, F., and Tuzhilin, A., Context-aware recommender systems, AI Magazine, 2011, vol. 32, no. 3, pp. 67–80.Google Scholar
  17. 17.
    Adomavicius, G., Sankaranarayanan, R., Sen, S., and Tuzhilin, A., Incorporating contextual information in recommender systems using a multidimensional approach, ACM Trans. Inf. Syst., 2005, vol. 23, no. 1, pp. 103–145.CrossRefGoogle Scholar
  18. 18.
    Codina, V., Ricci, F., and Ceccaroni, L., Semantically-enhanced pre-filtering for context-aware recommender systems, Proc. 3rd Workshop on Context-Awareness in Retrieval and Recommendation, New York: 2013, pp. 15–18.CrossRefGoogle Scholar
  19. 19.
    Baltrunas, L. and Ricci, F., Context-based splitting of item ratings in collaborative filtering, Proc. 3rd ACM Conf. on Recommender Systems, 2009, pp. 245–248.Google Scholar
  20. 20.
    Baltrunas, L. and Ricci, F., Context-dependent recommendations with items splitting, Proc. 1st Italian Information Retrieval Workshop, 2010, Padua, Italy, pp. 71–75.Google Scholar
  21. 21.
    Koren, Y., Bell, R., and Volinsky, C., Matrix factorization techniques for recommender systems, IEEE Computer, 2009, vol. 42, no. 8, pp. 30–37.CrossRefGoogle Scholar
  22. 22.
    Rendle, S., Factorization machines with libFM, ACM Trans. Intell. Syst. Technol., 2012, vol. 3, no. 3, p. 57 (1–22).CrossRefGoogle Scholar
  23. 23.
    Shi, Y., Larson, M., and Hanjalic, A., Mining contextual movie similarity with matrix factorization for context-aware recommendation, ACM Trans. Intell. Syst. Technol., 2013, vol. 4, no. 1, p. 16 (1–19).CrossRefGoogle Scholar
  24. 24.
    Smirnov, A.V., Pashkin, M.P., Shilov, N.G., and Levashova, T.V., Approach to construction of distributed system of intellectual support of solution taking in open information medium, Trudy St. Petersburg. Issled. Inst. Ross. Akad. Nauk, 2007, vol. 1, no. 4, pp. 36–49.Google Scholar
  25. 25.
    Kashevnik, A.M. and Teslya, N.N., Automated system of joint utilization of autotransport, Materialy konferentsii “Informatsionnye tekhnologii v upravlenii” (ITU-2012) (Proc. Conf. Information Technologies in Management (ITU-2012)), St. Petersburg: Elektropribor, 2012.Google Scholar
  26. 26.
    Boratto, L., Carta, S., Chessa, A., and Agelli, M., Group recommendation with automatic identification of user communities, Proc. IEEE/WIC/ACM Int. Joint Conf. on Web Intelligence and Intelligent Agent Technologies, 2009, vol. 3, pp. 547–550.Google Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • A. V. Smirnov
    • 1
  • N. G. Shilov
    • 1
  • A. V. Ponomarev
    • 1
  • A. M. Kashevnik
    • 1
  • V. G. Parfenov
    • 2
  1. 1.St. Petersburg Institute for Informatics and Automation of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations