Advertisement

Scientific and Technical Information Processing

, Volume 41, Issue 5, pp 302–308 | Cite as

Automatic transformation of Russian manual-alphabet gestures into textual form

  • V. E. Nahapetyan
  • V. M. Khachumov
Article

Abstract

This paper considers the task of sign-language interpretation for gestures that are used in the Russian Manual Alphabet (RMA) for the deaf and dumb. A software-hardware system is suggested that permits static and dynamic gestures to be transformed into a text on-line; the conducted experiments show that the system currently provides a fairly reliable recognition of all static and some dynamic RMA gestures. Methods to improve the quality of the dynamic gesture analysis are planned.

Keywords

sign-language interpretation Russian manual alphabet gesture recognition distant image three-dimensional sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    International Federation of Deafs. http://wfdeaf.org/faq
  2. 2.
    Sui, T., Arif, A., Sali, S., Syui, K., and Leon, S., System of recognition of Malayan gesture language gestures with the help of off-wire control gloves, Informatsiya, Kommunikatsiya i obrabotka signalov, 6-ya Mezhdunarodnaya konferentsiya (Proc. 6th Int. Conf. “Information, Communication and Signal Treatment”), 2007, pp. 1–4.Google Scholar
  3. 3.
    Ravikiran, D., Makhesh, K., Makhishi, S., Dkhirazh, R., Sudkhender, S., and Nitin, V., Detection of hand fingers in the problem of gesture language recognition, Trudy mezhdunarodnoi konferentsii inzhenerov i programmistov. Tom 1 (Proc. Int. Conf. Eng. Program. Vol. 1), Gonkong, 2009, pp. 489–493.Google Scholar
  4. 4.
    Krak, Yu., Barmak, A., Gandzha, A., Ternov, A., and Shatkovskii, N., Komp’yuternaya sistema virtual’nogo obshcheniya lyudei s problemami slukha, Kniga 4. Peredovye issledovaniya v oblasty ptogrammnogo obespecheniya I inzhenerii znanii (Computer System of Virtual Contact of People with Problems of Hearing. Book 4. Advanced Researches in the Area of Software and Engineering of Knowledge), 2008, pp. 161–165.Google Scholar
  5. 5.
    Three-dimensional Sensor Asus Xtion Pro Live. http://www.asus.com/Multimedia/Xtion-PRO-LIVE/
  6. 6.
    Zaitseva, G.L., Zhestovaya rech’. Daktilologiya: Ucheb. dlya stud. vyssh. ucheb. zavedenii (Gesture Speech. Dactilology. A Tutorial for Students of Higher Educational Institutes), Moscow: VLADOS, 2000.Google Scholar
  7. 7.
    Stok, W.S., Struktura yazyka zhestov: Skhema sistem vizual’noi kommunikatsii glukhikh Ameriki, issledovanie po lingvistike (Structure of Gesture Language: Scheme of deaf visual communication systems of America, Research on Linguistics. Collection of Papers), No. 8, Buffalo, 1960.Google Scholar
  8. 8.
    International Alphabet of Deaf-and-Dumbs. ISWA 2010. http://www.signbank.org/iswa/
  9. 9.
    OpenNI — Standard platform for three-dimensional perception. http://www.openni.org/
  10. 10.
    Nagapetyan, V.E., Fingertip detection in depth images, Iskusst. Intel. Prin. Resh., 2012, no. 1, pp. 90–95.Google Scholar
  11. 11.
    Nagapetyan, V.E. and Khachumov, V.M., Recognition of hand gestures by depth images, 9-aya mezhdunarodnaya konferentsiya “Intellektualizatsiya obrabotki informatsii” (Proc. 9th Int. Conf. “Intellectualization of Information Treatment”), Budva, Respublika Chernogoriya, 2012; Moscow, 2012, pp. 445–447.Google Scholar
  12. 12.
    Nagapetyan, V.E., ASL Fingerspelling Recognition, Vestn. Ross. Univ. Druzhby Narodov. Ser.: Matem., Inform., Fiz., 2013, no. 2, pp. 105–113.Google Scholar
  13. 13.
    Buyan, M.K., Zhosh, D., and Bora, P.K., Segmenting of continuous hand gestures and recognition of coarticulation, 5-Ya indiiskaya konferentsiya ICVGIP (Proc. 5th Indian Conf. ICVGIP), Madurai, India, 2006; Berlin: Springer-Verlag, 2006, pp. 564–575.Google Scholar
  14. 14.
    Laferty, Zh.D., Makkalum, A., and Pereira, F.S.N., Conditional accidental fields: Probability models for segmentation and marking of continuous data, Trudy vosemnadtsatoi mezhdunarodnoi konferentsii po mashinnomu obucheniyu (ICML’ 01) (Proc. 18th Int. Conf. on Machine Education, (ICML’ 01)), San-Francisco, Morgan Kaufmann, 2001, pp. 282–289.Google Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  1. 1.Peoples’ Friendship University of RussiaMoscowRussia
  2. 2.Laboratory of the Institute of System AnalysisRussian Academy of SciencesMoscowRussia

Personalised recommendations