The systematization, development, and application of grid-system technologies

Article

Abstract

This article systemizes grid systems of different types according to their main categories and features that determine their technical and functional possibilities. It considers intelligent grid systems and itemizes the directions by which the present-day models, algorithms, and tools of the software for grid systems, including those with elements of artificial intelligence, are developed. It supplies information about the implemented intelligent software-hardware systems for monitoring and the appraisals of the technical condition of objects in national and regional networks of the mainline power supply.

Keywords

grid systems distributed systems artificial intelligence software package (SP) algorithms nebular computations intelligent grid systems architectures service-oriented approach power systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Proc. IEEE, 2011, vol. 99, pp. 928–951, 952–956, 977–997, 998–1027, 1028–1045,1074–1082, 1098–1115, 1046–1062.Google Scholar
  2. 2.
    Chair of Informatics. Nanotechnology and Informatics Faculty, Mos. Fiz. Tekh. Inst., 2007. http://www.fnti.kiae.ru/.Google Scholar
  3. 3.
    NIST Framework and Roadmap for Smart grid Interoperability Standards, Release 1.0, Office of the National Coordinator for Smart grid Interoperability. http:/www.nist.gov/public_affairs/releases/upload/smartgrid_interoperability_final.pdf
  4. 4.
    Khorashadi, B., et al., Distributed automated incident detection with Vgrid, IEEE Wireless Commun., 2011, vol.18, pp. 64–73.CrossRefGoogle Scholar
  5. 5.
    Rudin, C., Waltz, D., Anderson, R., et al., Machine learning for the New York city power grid, IEEE Trans. Pattern Anal. Mach. Intell., 2012, vol.34, pp. 328–345.CrossRefGoogle Scholar
  6. 6.
    Chang, R., Yu, Yu., Hairong, L.V., et al., Selling the smart grid. Part 1, IEEE Consum. Electron. Mag., 2012, vol.1, pp. 24–31.CrossRefGoogle Scholar
  7. 7.
    Proidakov, E.M. and Teplitskii, L.A., English-Russian Explanatory Dictionary of Terms and Abbreviations on Computer Engineering, Internet and Programming. Computers (En-Ru) (to ABBYY Lingvo x3 Version), 5th ed., Moscow, 2007.Google Scholar
  8. 8.
    Hewitt, C., ORGs for scalable, robust, privacy-friendly client cloud computing, IEEE Internet Comput., 2008, vol.12, pp. 76–99.CrossRefGoogle Scholar
  9. 9.
    Kalyaev, A.I., On one method of solution of incoming flow of joint problems in multiagent GRID, in Problemy upravleniya i modelirovaniya v slozhnykh sistemakh: sb. trudov (Problems of Management and Modeling in Complex Systems. Coll. Papers), Taganrog, 2013, pp. 409–413.Google Scholar
  10. 10.
    Fogarti, K., Cloud Computations: Determinations and Solutions, Direktor Inform. Sluzhby, 2011, no. 3. http://www.osp.ru/cio/2011/03/13007508/ Google Scholar
  11. 11.
    SETI@home (Search for Extra Terrestrial Intelligence at home). http://setiathome.berkeley.edu/
  12. 12.
    Folding@home distributed computing project. http://folding.stanford.edu/
  13. 13.
    DIMES — a distributed scientific research project. http://www.netdimes.org/new/
  14. 14.
    The Clean Energy project. http://cleanenergy.harvard.edu/
  15. 15.
  16. 16.
    World Community grid. http://www.worldcommunitygrid.org/
  17. 17.
  18. 18.
    Zhabelova, G. and Vyatkin, V., Multiagent smart grid automation architecture based on IEC 61850/61499 intelligent logical nodes, IEEE Trans. Ind. Electron., 2012, vol. 59, pp. 2351–2362.CrossRefGoogle Scholar
  19. 19.
    Mo, Y., Kim H.-J., Brancik, K., et al., Cyber-physical security of a smart grid infrastructure, Proc. IEEE, 2012, vol. 100, pp. 195–209.CrossRefGoogle Scholar
  20. 20.
    Alam, M.R., Reaz, M.B.I., and Mohd Ali, M.A., SPEED: An Inhabitant Activity Prediction Algorithm for Smart Homes, IEEE Trans. Syst., Man. Cybern., A., 2012, vol. 42, pp. 985–990.CrossRefGoogle Scholar
  21. 21.
    Fyhn, K., Jacobsen, R.M., Popovski, P., and Torben, L., Fast capture-recapture approach for mitigating the problem of missing RFID tags, IEEE Trans. Mobile Comput., 2012, vol. 11, pp. 518–528.CrossRefGoogle Scholar
  22. 22.
    Niculita, R. and Tapus, N., Model for a grid infrastructure based on Java, Sci. Bull. C, 2009, vol. 71, pp. 113–124.Google Scholar
  23. 23.
    Fukuda, M. and Miyauchi, J., An implementation of parallel file distribution in an agent hierarchy, J. Supercomput., 2009, vol. 47, pp. 255–285.CrossRefGoogle Scholar
  24. 24.
    Nadarajan, R., Applying SD-tree for object-oriented query processing, Informatica (Slovenia), 2009, vol. 33, pp. 169–179.MATHGoogle Scholar
  25. 25.
    Li, D., et al., IPBGA: A hybrid P2P based grid architecture by using information pool protocol, J. Supercomput., 2009, vol. 49, pp. 159–189.CrossRefGoogle Scholar
  26. 26.
    Chao, I., Ardaiz, O., and Sanguesa, R., A group selection pattern applied to grid resource management, Knowl. Eng. Rev., 2009, vol. 3, pp. 91–103.Google Scholar
  27. 27.
    Ranaldo, N. and Zimeo, E., Time and cost-driven scheduling of data parallel tasks in grid workflows, IEEE Syst. J., 2009, vol. 3, pp. 104–120.CrossRefGoogle Scholar
  28. 28.
    Roy, S. and Mukherjee, N., Adaptive execution of jobs in computational grid environment, J. Comput. Sci. Technol., 2009, vol. 24, pp. 925–938.CrossRefGoogle Scholar
  29. 29.
    Shinohara, M. and Kikuchi, T., Space weather news on the Web at NICT, J. Nat. Inst. Inf. Commun. Technol., 2005, vol. 52, pp. 207–214.Google Scholar
  30. 30.
    Goel, A., et al., Interacting process classes, ACM, Trans. Software Eng., Methodol., 2009, vol. 18, pp. 13/1–13/47.CrossRefGoogle Scholar
  31. 31.
    Catherine, M., Bryant, D.J., and Chalmers, B.A., Boundary, purpose, and values in work-domain models: Models of naval command and control, IEEE Trans. Syst., man, and Cybern. — Part A, Syst. Humans, 2005, vol. 35, pp. 603–617.CrossRefGoogle Scholar
  32. 32.
    Ke, H., Chen, Y., and Wang, G., Target assignment model of electronic equipment based on GM(1,1) model, The J. Grey Syst. 3 — Nat. Univ. Defense Technol., 2005, pp. 235–242.Google Scholar
  33. 33.
    Liu, X.L. and Liao, G.S., Multi-target localization in bistatic MIMO radar, Electron. Lett., 2010, vol. 46, pp. 945–949.CrossRefGoogle Scholar
  34. 34.
  35. 35.
    Samsung Electronics. http://www.samsung.com/
  36. 36.
  37. 37.
  38. 38.
    Microsoft Corp., http://www.microsoft.com/
  39. 39.
    DIMES — a distributed scientific research project. http://www.netdimes.org/new/
  40. 40.
    The Clean Energy project. http://cleanenergy.harvard.edu/
  41. 41.
    Galli, S. and Logvinov, O., Recent development in the standardization of power line communications within the IEEE, IEEE Commun. Mag., 2008, vol. 46, pp. 64–71.CrossRefGoogle Scholar
  42. 42.
    Gharavi, H. and Ban, K., Multihop sensor network design for wideband communications, Proc. UEEE, 2003, vol. 91, pp. 1221–1234.Google Scholar
  43. 43.
    Royer, E. and Perkins, C., Multicast operation of the ad-hoc on-demand distance vector routing protocol, Proc. ACM Mobicom’99, Seattle, WA. 1999, pp. 207–218.Google Scholar
  44. 44.
    Sinha, P., Sivakumar, R., and Bharghavan, V., MCE-DAR: Multicast core extraction distributed ad-hoc routing, Proc. Wireless Commun. Netw. Conf., New Orleans, LA, 1999, vol. 3, pp. 1313–1317.Google Scholar
  45. 45.
    Zheng, J. and Lee, M.J., A comprehensive performance study of IEEE 802.15.4, Sensor Network operations, hoboken, ch. 4, 2006, pp. 218–237.Google Scholar
  46. 46.
    Motegi, J. and Horiuchi, H., AODV-based multipath routing protocol for mobile ad hoc networks, IEICE Trans. Commun., 2004, vol. E87-B, pp. 2477–2483.Google Scholar
  47. 47.
    Tsirigos and Haas, Z.J., Multipath routing in the presence of frequent topological changes, IEEE Commun. Mag., 2001, vol. 39, pp. 132–138.CrossRefGoogle Scholar
  48. 48.
    IEEE Trans. Ind. Inf., 2013, vol. 9, pp. 28–42, 52–61.Google Scholar
  49. 49.
    Vaccaro, A., et al., An integrated framework for smart microgrids modeling, monitoring, control, communication, and verification, Proc. IEEE, 2011, pp. 119–132.Google Scholar
  50. 50.
    Demichev, A.P., et al., grid architecture for national nanotechnological network, Proc. 4th Int. Conf. on Distributed Computing and grid-Technologies in Science and Education, Dubna, 2010, pp. 352–356.Google Scholar
  51. 51.
  52. 52.
  53. 53.
  54. 54.
  55. 55.
  56. 56.
  57. 57.
  58. 58.
    Khan, S. and Ahmad, I., A cooperative game theoretical technique for joint optimization of energy consuption and response time in computational grids, IEEE Trans. Paral. Distrib. Syst., 2009, vol. 20, pp. 346–360.CrossRefGoogle Scholar
  59. 59.
    Saad, Z.H., Vincent, P., and Tamer, B., Game-theoretic methods for the smart grid, IEEE Signal Proc. Mag., 2012, vol. 29, pp. 86–105.CrossRefGoogle Scholar
  60. 60.
    Bai, H.F., Wang, B.T., Wang, DS., and Li, M.W., Active-fault-alarm enabled pre-protection scheme in 10G-EPON for smart power grid, J. China Univ. Posts Telecommun., 2012, vol. 19, pp. 106–109.CrossRefGoogle Scholar
  61. 61.
    Dobber, M., et al., Dynamic load balancing and job replication in a global-scale grid environment: A comparison, IEEE Trans. Paral. Distrib. Syst., 2009, vol. 20, pp. 207–218.CrossRefGoogle Scholar
  62. 62.
    Lin, L. and Huai, J., Qgrid: An adaptive trust aware resource management framework, IEEE Syst. J., 2009, vol. 3, pp. 78–90.CrossRefGoogle Scholar
  63. 63.
    den Burger, M. and Kielmann, T., Collective receiver-initiated multicast for grid applications, IEEE Trans. Paral. Distrib. Syst., 2009, vol. 22, pp. 231–244.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  1. 1.VINITIMoscowRussia

Personalised recommendations