Advertisement

Moscow University Soil Science Bulletin

, Volume 74, Issue 5, pp 193–198 | Cite as

Estimating the Toxicity and Biological Availability for Interaction Products of Metallic Iron and Humic Substances

  • M. M. Anuchina
  • D. A. PankratovEmail author
  • D. P. AbroskinEmail author
  • N. A. KulikovaEmail author
  • D. T. GabbasovaEmail author
  • D. N. MatorinEmail author
  • D. S. VolkovEmail author
  • I. V. PerminovaEmail author
ECOLOGICAL SAFETY
  • 11 Downloads

Abstract

This article considers the influence that suspensions of nanoparticles (sized from 10 to 60 nm) of iron oxo-compounds in different oxidation states have on biological objects. The suspension is formed by the interaction of metallic iron with aqueous solutions of humic substances. Based on the example of green microalgae Scenedesmus quadricauda (Turp.) Breb., it is shown that suspensions that contain iron oxo-compound nanoparticles stabilized with humic substances at an iron concentration from 0.14 to 2036 µM do not have a toxic effect on microalgae. The availability of iron contained in the suspensions was evaluated in the experiment on sprouts of wheat Triticum aestivum L., which had been grown under iron-deficient conditions. The root uptake of the ionic form of iron contained in the suspension was confirmed. It is shown that the studied suspensions of iron nanoparticles stabilized by humic substances accumulate on the surface of plant roots. These suspensions are supposed to be a source of iron with prolonged action for plants.

Keywords:

humic substances iron-containing nanoparticles iron oxo-compounds iron containing preparations corrosion evaluation of biological availability toxicological evaluation 

Notes

ACKNOWLEDGMENTS

We are grateful to T.B. Egorova for analysis of the preparations by transmission electron microscopy.

FUNDING

This study was supported by the Russian Scientific Foundation, project no. 16-14-00167.

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

REFERENCES

  1. 1.
    Anuchina, M.M., Badun, G.A., Severin, A.V., et al., Sorption of humic matter marked by tritium at inorganic sorbents, Materialy II Vserossiiskoi nauchnoi konferentsii “Aktual’nye problemy adsorbtsii i kataliza” (Proc. II All-Russian Sci. Conf. “Topical Problems on Adsorption and Catalysts”), Ples, 2017.Google Scholar
  2. 2.
    Anuchina, M.M. and Shakirov, S.M., Role of humic matters in forming nano-sized particles of corrosion products of metallic iron, Materialy XXIV Mezhdunarodnoi nauchnoi konferentsii studentov, aspirantov i molodykh uchenykh “Lomonosov-2017” (Proc. XXIV Int. Sci. Conf. for Students, Postgraduates and Young Scientists “Lomonosov-2017”), Moscow, 2017. https://lomonosovmsu.ru/archive/Lomonosov_2017/ data/section_12_10955.htm. Cited 28.05.2018.Google Scholar
  3. 3.
    Gaisina, L.A., Fazlutdinova, A.I., and Kabirov, R.R., Sovremennye metody vydeleniya i kul’tivirovaniya vodoroslei (Modern Methods for Algae Extracting and Cultivating), Ufa, 2008.Google Scholar
  4. 4.
    Zhmur, N.S. and Orlova, T.L., Metodika opredeleniya toksichnosti vod, vodnykh vytyazhek iz pochv, osadkov stochnykh vod i otkhodov po izmeneniyu urovnya fluorestsentsii khlorofilla i chislennosti kletok vodoroslei (Methods for Determining Toxicity of Water, Water Extracts from Soils, Waste Water Sediments and Wastes according to f Chlorophyll Fluorescence Variation and Algae Cells Number), Moscow, 2001.Google Scholar
  5. 5.
    Kudryavtseva, E.A., Anilova, A.V., Kuz’min, S.N., and Sharygina, M.V., Correlation between different forms of ferrum and Triticum aestivum L. seeds sprouting, Vestn. Orenb. Gos. Univ., 2013, no. 6 (155).Google Scholar
  6. 6.
    Marczenko, Z. and Balcerzak, M., Separation, Preconcentration, and Spectrophotometry in Inorganic Analysis, Amsterdam: Elsevier, 2001.Google Scholar
  7. 7.
    Matorin, D.N. and Rubin, A.B., Fluorestsentsiya khlorofilla vysshikh rastenii i vodoroslei (Fluorescence of Chlorophyll of Higher Plants and Algae), Moscow, 2012.Google Scholar
  8. 8.
    Pankratov, D.A., Sorkina, T.A., Karelina, E.E., et al., The way to simulate iron redox transformations in organic-inorganic compounds with humic matters, Materialy XII Mezhdunarodnoi konferentsii “Messbauerovskaya spektroskopiya i ee primeneniya” (Proc. XII Int. Conf. “Mössbauer Spectroscopy and Its Applications”), Suzdal, Moscow, 2012.Google Scholar
  9. 9.
    Sorkina, T.A., Kulikova, N.A., Filippova, O.I., et al., Iron deficiency correctors for plants based on carbon humic matters: synthesizing and application, Ekol. Prom. Rossii, 2010, no. 2.Google Scholar
  10. 10.
    Fedoseeva, E.V., Sapunkova, N.Yu., and Terekhova, V.A., Prakticheskaya ekotoksikologiya: otsenka chuvstvitel’nosti biotest-kul’tur (Practical Ecological Toxicology: the Way to Estimate Biotest-Cultures Sensitivity), Moscow, 2016.Google Scholar
  11. 11.
    Alidoust, D. and Isoda, A., Effect of γ-Fe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment, Acta Physiol. Plant., 2013, vol. 35, no. 12.CrossRefGoogle Scholar
  12. 12.
    Laurent, S., Forge, D., Port, M., et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev., 2008, vol. 108, no. 6.Google Scholar
  13. 13.
    Martinez-Fernández, D. and Komarek, M., Comparative effects of nanoscale zero-valent iron (nZVI) and Fe2O3 nanoparticles on root hydraulic conductivity of Solanum lycopersicum L., Environ. Exp. Bot., 2016, vol. 131, pp. 128–136.CrossRefGoogle Scholar
  14. 14.
    Nair, R., Varghese, S.H., Nair, B.G., et al., Nanoparticulate material delivery to plants, Plant Sci., 2010, vol. 179, no. 3, pp. 154–163.CrossRefGoogle Scholar
  15. 15.
    Pankratov, D.A. and Anuchina, M.M., Role of humic substances in the formation of nanosized particles of iron corrosion products, Russ. J. Phys. Chem. A, 2017, vol. 91, no. 2.CrossRefGoogle Scholar
  16. 16.
    Polyakov, A.Yu., Sorkina, T.A., Goldt, A.E., et al., Mössbauer spectroscopy of frozen solutions as a stepwise control tool in preparation of biocompatible humic-stabilized feroxyhyte nanoparticles, Hyperfine Interact., 2013, vol. 219, no. 1-3.CrossRefGoogle Scholar
  17. 17.
    Pourbaix, M., Thermodynamics and corrosion, Corros. Sci., 1990, vol. 3, no. 10.Google Scholar
  18. 18.
    Rico, C.M., Majumdar, S., Duarte-Gardea, M., et al., Interaction of nanoparticles with edible plants and their possible implications in the food chain, J. Agric. Food Chem., 2011, vol. 59, no. 8.CrossRefGoogle Scholar
  19. 19.
    Rosei, F., Nanostructured surfaces: challenges and frontiers in nanotechnology, J. Phys. Condens. Matter, 2004, vol. 16, no. 17.Google Scholar
  20. 20.
    Sahrawat, K.L., Iron toxicity in wetland rice and the role of other nutrients, J. Plant Nutr., 2005, vol. 27, no. 8.CrossRefGoogle Scholar
  21. 21.
    Singh, N., Jenkins, G.J.S., Asadi, R., and Doak, S.H., Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION), Nano Rev., 2010, vol. 1.CrossRefGoogle Scholar
  22. 22.
    Sorkina, T.A., Polyakov, A.Yu., Kulikova, N.A., et al., Nature-inspired soluble iron-rich humic compounds: new look at the structure and properties, J. Soils Sediments, 2014, vol. 14, no. 2.CrossRefGoogle Scholar
  23. 23.
    Trevisan, S., Francioso, O., Quaggiotti, S., and Nardi, S., Humic substances biological activity at the plant-soil interface from environmental aspects to molecular factors, Plant Signal Behav., 2010, vol. 5, no. 6.CrossRefGoogle Scholar
  24. 24.
    Yang, Z., Chen, J., Dou, R.Z., et al., Assessment of the phytotoxicity of metal oxide nanoparticles on two crop plants, maize (Zea mays L.) and rice (Oryza sativa L.), Int. J. Environ. Res. Pub. Health, 2015, vol. 12, pp. 15100–15109.CrossRefGoogle Scholar
  25. 25.
    Zhu, H., Han, J., Xiao, J.Q., and Jin, Y., Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants, J. Environ. Monit., 2008, vol. 10, no. 6, pp. 713–717.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1. Department of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.Department of Soil Science, Moscow State UniversityMoscowRussia
  3. 3.Department of Biology, Moscow State UniversityMoscowRussia

Personalised recommendations