Moscow University Soil Science Bulletin

, Volume 73, Issue 2, pp 89–94 | Cite as

Structural and Functional Characteristics of the Prokaryotic Community of Soddy-Podzolic Soil Influenced by the Herbicide Glyphosate

  • A. D. ZhelezovaEmail author
  • N. A. Manucharova
  • M. V. Gorlenko
Soil Biology


The amount of chemicals used for plant protection is growing due to the intensification of agriculture. Glyphosate is one of the most widely used herbicides; consequently, its influence on the microbial communities of agricultural soils is of interest. Structural and functional changes in the prokaryotic community in soddy-podzolic soil related to glyphosate treatment have been studied. No influence of the herbicide on the total number of prokaryotes or on the indices of substrate utilization intensity by the soil microbial community was observed. An increase in CO2 emissions was a short-term effect of glyphosate application. The numbers of metabolically active Archaea and Acidobacteria decreased, while the number of metabolically active Actinobacteria increased after long-term exposure of the soil to glyphosate.


soddy-podzolic soils glyphosate microbial community metabolically active prokaryotes FISH functional diversity multisubstrate test 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gorlenko, M.V., Metodika vypolneniya izmerenii intensivnosti potrebleniya test-substratov mikrobnymi soobshchestvami pochv i pochvopodobnykh ob”ektov fotometricheskim metodom (The Photometric Method of Measuring of Test-Substrate Utilization Intensity by Microbial Communities of Soils and Soil-Like Objects), Moscow, 2010.Google Scholar
  2. 2.
    Gorlenko, M.V. and Kozhevin, P.A., Mul’tisubstratnoe testirovanie prirodnykh mikrobnykh soobshchestv (Multisubstrate Test of Natural Microbial Communities), Moscow, 2005.Google Scholar
  3. 3.
    Gorlenko, M.V., Yakimenko, O.S., Golichenkov, M.V., and Kostina, N.V., Functional biodiversity of soil microbe colonies affected by organic substrates of different kinds, Moscow Univ. Soil Sci. Bull., 2012, vol. 67, no. 2, p. 71.CrossRefGoogle Scholar
  4. 4.
    Zhelezova, S.V., Akimov, T.A., Beloshapkina, O.O., and Berezovskii, E.V., Influence of different technologies of winter wheat cultivation on crop yield and phytosanitary condition of crops (on the example of the field experiment of Precision Agriculture Center in Russian State Agrarian University–Moscow Timiryazev Agricultural Academy, Agrokhimiya, 2017, no. 4.Google Scholar
  5. 5.
    Zvyagintsev, D.G., Metody pochvennoi mikrobiologii i biokhimii (Methods of Soil Microbiology and Biochemistry), Moscow, 1991.Google Scholar
  6. 6.
    Manucharova, N.A., Identifikatsiya metabolicheski aktivnykh kletok prokariot v pochvakh s primeneniem molekulyarno-biologicheskogo fluorestsentno-mikroskopicheskogo metoda analiza fluorescence in situ hybridization (FISH) (Identification of Metabolically Active Prokaryotes in Soils Using the Technique of Fluorescence in situ Hybridization (FISH)), Moscow, 2008.Google Scholar
  7. 7.
    Semenov, M.V., Manucharova, N.A., and Stepanov, A.L., Distribution of metabolically active prokaryotes (archaea and bacteria) throughout the profiles of chernozem and brown semidesert soil, Eurasian Soil Sci., 2016, vol. 49, no. 2, p. 217.CrossRefGoogle Scholar
  8. 8.
    Khitrov, N.B., Soils of long-term experiment of Russian State Agrarian University–Moscow Timiryazev Agriculture Academy, Izv. Timiryazevsk. S-kh. Akad., 2012, no. 3.Google Scholar
  9. 9.
    Allegrini, M., Zabaloy, M.C., and Gómez, E.D.V., Ecotoxicological assessment of soil microbial community tolerance to glyphosate, Sci. Total Environ., 2015, vol. 533, pp. 60–68.CrossRefGoogle Scholar
  10. 10.
    Busse, M.D., Ratcliff, A.W., Shestak, C.J., and Powers, R.F., Glyphosate toxicity and the effects of longterm vegetation control on soil microbial communities, Soil Biol. Biochem., 2001, vol. 33, pp. 1777–1789.CrossRefGoogle Scholar
  11. 11.
    Doublet, J., Mamy, L., and Barriuso, E., Delayed degradation in soil of foliar herbicides glyphosate and sulcotrione previously absorbed by plants: consequences on herbicide fate and risk assessment, Chemosphere, 2009, vol. 77, no. 4, pp. 582–589.CrossRefGoogle Scholar
  12. 12.
    Duke, S.O. and Powles, S.B., Glyphosate: a once-in-acentury herbicide (mini-review), Pest Manage. Sci., 2008, vol. 64, pp. 319–325.CrossRefGoogle Scholar
  13. 13.
    Helander, M., Saloniemi, I., and Saikkonen, K., Glyphosate in northern ecosystems, Trends Plant Sci., 2012, vol. 17, pp. 569–574.CrossRefGoogle Scholar
  14. 14.
    Henderson, A.M., Gervais, J.A., Luukinen, B., et al., Glyphosate General Fact Sheet, Corvallis, 2010.Google Scholar
  15. 15.
    Imfeld, G., Lefrancq, M., Maillard, E., and Payraudeau, S., Transport and attenuation of dissolved glyphosate and AMPA in a stormwater wetland, Chemosphere, 2013, vol. 90, no. 4, pp. 1333–1339.CrossRefGoogle Scholar
  16. 16.
    Imfeld, G. and Vuilleumier, S., Measuring the effects of pesticides on bacterial communities in soil: a critical review, Eur. J. Soil Biol., 2012, vol. 49, pp. 22–30.CrossRefGoogle Scholar
  17. 17.
    Lipok, J., Wieczorek, D., Jewgiński, M., and Kafarski, P., Prospects of in vivo 31P NMR method in glyphosate degradation studies in whole cell system, Enzyme Microb. Technol., 2009, vol. 44, no. 1, pp. 11–16.CrossRefGoogle Scholar
  18. 18.
    Mamy, L. and Barriuso, E., Glyphosate adsorption in soils compared to herbicides replaced with the introduction of glyphosate resistant crops, Chemosphere, 2005, vol. 61, no. 6, pp. 844–855.CrossRefGoogle Scholar
  19. 19.
    Pessagno, R.C., Torres Sanchez, R.M., and Santos Afonso, M., Glyphosate behavior at soil and mineralwater interfaces, Environ. Pollut., 2008, vol. 153, no. 1, pp. 53–59.Google Scholar
  20. 20.
    Shehata, A., Kuhnert, M., Haufe, S., and Kruger, M., Neutralization of the antimicrobial effect of glyphosate by humic acid in vitro, Chemosphere, 2013, vol. 104, pp. 258–261.CrossRefGoogle Scholar
  21. 21.
    Shushkova, T., Ermakova, I., and Leontievsky, A., Glyphosate bioavailability in soil, Biodegradation, 2010, vol. 21, pp. 403–410.CrossRefGoogle Scholar
  22. 22.
    Sviridov, A.V., Shushkova, T.V., Ermakova, I.T., et al., Microbial degradation of glyphosate herbicides (rev.), Appl. Biochem. Microbiol., 2015, vol. 51, no. 2, pp. 188–195.CrossRefGoogle Scholar
  23. 23.
    Vereecken, H., Mobility and leaching of glyphosate: a review, Pest Manage. Sci., 2005, vol. 61, no. 12, pp. 1139–1151.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. D. Zhelezova
    • 1
    Email author
  • N. A. Manucharova
    • 1
  • M. V. Gorlenko
    • 1
  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations