Moscow University Soil Science Bulletin

, Volume 68, Issue 3, pp 129–134 | Cite as

Engineered nanomaterials in soil: Sources of entry and migration pathways

  • M. M. Gladkova
  • V. A. Terekhova


This review analyzes the present-day problems and expansion pathways of engineered nanomaterials in the environment, particularly in soils and related habitats (water and air). The sources of unintentional and intentional nanoparticle entry (NP entry) into natural systems are discussed. Attention is focused on the problem of bioavailability of engineered nanomaterials in soils due to the high variation in the conditions of a location.


nanomaterials pollutant toxicity migration soils 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bagdasaryan, A.S., Biological tests for soils from cities technogenic areas by using vegetable organisms, Cand. Sci. (Biol.) Dissertation, Stavropol, 2005.Google Scholar
  2. 2.
    Venitsianov, E.V., Vinichenko, V.N., Guseva, T.V., et al., Ekologicheskii monitoring: shag za shagom (Ecological Monitoring: Step by Step), Zaik, E.A., Ed., Moscow, 2003.Google Scholar
  3. 3.
    Galchenko, Yu.P., Ecological aspects of nanosized particles formation under subsoils development, Gorn. Inform.-Analit. Byull., 2007, no. 10.Google Scholar
  4. 4.
    Gladkova, M.M. and Terekhova, V.A., The way to tests nanodiamonds produced by detonation synthesis according to higher plants reaction and detoxing role of humic agent under combined use, Mater. III Mezhdunarod. foruma po nanotekhnologiyam (Proc. 3rd Int. Forum on Nanotechnologies), Moscow, Nov. 1–3, 2010.Google Scholar
  5. 5.
    Gmoshinskii, I.V., Smirnova, V.V., and Khotimchenko, S.A., Nanomaterials safety estimation: state-of-the-art, Ross. Nanotekhnol., 2010, vol. 5, no. 9–10.Google Scholar
  6. 6.
    Gusev, A.I., Nanokristallicheskie materialy (Nanocrystalline Materials), Gusev, A.I. and Rempel’, A.A., Eds., Moscow, 2001.Google Scholar
  7. 7.
    Krichevskii, G.E., Nanotechnologies: dangers and risks. Inspecting principles for nanotechnologies and nanomaterials, Nanotekhnol. Okhrana Zdorov’ya, 2010, vol. 2, no. 3 (4).Google Scholar
  8. 8.
    Leont’ev, A., Nanomaterials can be dangerous for people and environment. Accessed 22.08.2012.
  9. 9.
    MP (Methodological Recommendations) no. 1.2.2639-10: Quantitative Methods for Determining Nanomaterials in Nanoindustry, Moscow: Federal. Tsentr Gigieny i Epidemiologii Rospotrebnadzora, 2010.Google Scholar
  10. 10.
    Perminova, I.V., Humic matters is the challenge to chemists of 21st century, Khim. Zhizn’, 2008, no. 1.Google Scholar
  11. 11.
    Trifonova, T.A., Ekologicheskaya bezopasnost’ nanochastits, nanomaterialov i nanotekhnologii: Ucheb. posobie (Ecological Safety of Nanoparticles, Nanomaterials and Nanotechnology: Student’s Book), Trifonova, T.A. and Shirkin, L.A., Eds., Vladimir, 2009.Google Scholar
  12. 12.
    Fedotov, G.N. and Shalaev, V.S., Osnovy nanostrukturnoi organizatsii pochv: Ucheb. posobie (Foundations of Soils Nanostructuralization: Student’s Book), Dobrovol’skii, G.V., Ed., Moscow, 2012.Google Scholar
  13. 13.
    Boxall, A., Chaudhry, Q., Sinclair, C., et al., Current and future predicted environmental exposure to engineered nanoparticles, Rep. Central Science Lab., Dep. Environment and Rural Affairs, York, UK, 2007.Google Scholar
  14. 14.
    Buffle, J. and Leppard, G.G., Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material, Environ. Sci. Technol., 1995, vol. 29, pp. 2169–2175.CrossRefGoogle Scholar
  15. 15.
    Cornelis, G., Kirby, J.K., Beak, D., et al., A method for determining the partitioning of manufactured silver and cerium oxide nanoparticles in soil environments, Environ. Chem., 2010, vol. 7, no. 7.Google Scholar
  16. 16.
    Darlington, T.K., Neigh, A.M., Spencer, M.T., et al., Nanoparticle characteristics affecting environmental fate and transport through soil, Envrion. Toxicol. Chem., 2009, vol. 28, no. 6, pp. 1191–1199.CrossRefGoogle Scholar
  17. 17.
    Fang, J., Sahn, X.Q., Wen, B., et al., Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns, Environ. Pollut., 2009, vol. 157, pp. 1101–1109.CrossRefGoogle Scholar
  18. 18.
    Gimbert, L.J., Haygarth, P.M., Beckett, R., and Worsfold, P.J., The influence of sample preparation on observed particle size distributions for contrasting soil suspensions using flow field-flow fractionation, Environ. Chem., 2006, vol. 3.Google Scholar
  19. 19.
    Gimbert, L.J., Hamon, R.E., Casey, P.S., and Worsfold, P.J., Partitioning and stability of engineered ZnO nanoparticles in soil suspensions using field-flow fractionation, Environ. Chem., 2007, vol. 4, pp. 8–10.CrossRefGoogle Scholar
  20. 20.
    Gladkova, M.M. and Terekhova, V.A., Phytotoxicity of nano-TiO2 and effect of humus preparation, Proc. 6th SETAC World Congr., SETAC Europe 22nd Annu. Meeting, Berlin, May 20–24, 2012.Google Scholar
  21. 21.
    Gustafsson, O. and Gschwemd, G., Aquatic colloids: concepts, definitions and current challenges, Limnol. Oceanogr., 1997, vol. 42, pp. 517–528.CrossRefGoogle Scholar
  22. 22.
    Handy, R.D., Cornelis, G., Fernandes, T., et al., Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench, Environ. Toxicol. Chem., 2012, vol. 31, no. 1.Google Scholar
  23. 23.
    Honeyman, B.D. and Santschi, P.H., The role of particles and colloids in the transport of radionuclides and trace metals in the ocean, Environmental Particles, Buffle, J. and van Leeuwen, H.P., Eds., Boca Raton, 1992, chap. 10, pp. 379–423.Google Scholar
  24. 24.
    Klaine, S.J., Alvarez, P.J.J., Batley, G.E., et al., Nanomaterials in the environment: behavior, fate, bioavailability, and effects, Environ. Toxicol. Chem., 2008, vol. 27, no. 9.Google Scholar
  25. 25.
    Lead, J.R. and Wilkinson, K.J., Environmental colloids and particles: current knowledge and future developments, Environmental Colloids: Behavior, Structure and Characterization, Wilkinson, K.J. and Lead, U.R., Eds., 2007, vol. 10, chap. 1.Google Scholar
  26. 26.
    Madden, A.S., Hochella, M.F., and Luxton, T.P., Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 4095–4104.CrossRefGoogle Scholar
  27. 27.
    Meyer, J.N., Lord, C.A., Yang, X.Y., et al., Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans, Aquatic Toxicol., 2010, vol. 100, no. 2.Google Scholar
  28. 28.
    Noack, A.G., Grant, C.D., and Chittleborough, D.J., Colloid movement through stable soils of low cationexchange capacity, Environ. Sci. Technol., 2000, vol. 34, pp. 2490–2497.CrossRefGoogle Scholar
  29. 29.
    Petersen, E.J., Huang, Q., and Weber, W.J., Bioaccumulation of radio-labeled carbon nanotubes by Eisenia fetida, Environ. Sci. Technol., 2008, vol. 42, pp. 3090–3095.CrossRefGoogle Scholar
  30. 30.
    Sigg, L., The regulation of trace elements in lakes: the role of sedimentation, Chemical and Biological Regulation of Aquatic Systems, Boca Raton, 1994.Google Scholar
  31. 31.
    Nanoscience and Nanotechnology: Environmental and Health Impacts, chap. 14: Unrine, J., Bertsch, P., and Hunyadi, S., Bioavailability, Trophic Transfer, and Toxicity of Manufactured Metal and Metal Oxide Nanoparticles in Terrestrial Environments, Dublin, 2008.Google Scholar
  32. 32.
    Unrine, J.M., Tsyusko, O.V., Hynyadi, S., et al., Effects of particle size on chemical speciation and bioavailability of Cu to earthworms (Eisenia fetida) exposed to Cu nanoparticles, J. Environ. Quality, 2010, vol. 39, pp. 1942–1953.CrossRefGoogle Scholar
  33. 33.

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  1. 1.Land Resource and Soil Assessment DepartmentMoscow State UniversityMoscowRussia
  2. 2.A.N. Severtsov Institute of Ecology and EvolutionRussian Academy of SciencesMoscowRussia

Personalised recommendations