Moscow University Soil Science Bulletin

, Volume 66, Issue 1, pp 15–17

The microbial transformation of fungal mycelium as the predecessor of humic acids

  • E. N. Tsyganova
  • D. G. Zvyagintsev
  • L. V. Lysak
  • A. L. Stepanov


This work includes investigation of microbial decomposition of fungal mycelium by pure and mixed bacteria cultures. The decomposition of mycelium is estimated according to CO2 emission activity by gas chromatography and the change in the quantity of bacterial cells by luminescence microscopy. A comparative stability of fungal melanin to microbial destruction is found. It is shown that fungal mycelium was decomposed first mainly by a native complex of microorganisms and later by gram-positive bacteria. In two months of laboratory work, the fungal biomass decomposed by 25–37%. The results of our research verify the possibility of including melanin in humic acids.


melanin decomposition soil microbial complex pure bacterial cultures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zaprometova, K.M., Mirchink, T.G., Orlov, D.S., and Yukhnin, A.A., Characteristic of Black Pigments of Phaeochrous Geophilous Fungus, Pochvoved., 1971, no. 7, pp. 22–30.Google Scholar
  2. 2.
    Zaprometova, K.M. and Mirchink, T.G., Phaeochrous Fungus Pigments and Their Ecological Role, in Mikrobnye metabolisty (Microbes Metabolites), Moscow: MGU, 1979, pp. 193–209.Google Scholar
  3. 3.
    Zvyagintsev, D.G., Metody pochvennoi mikrobiologii i biokhimii (Methods of Soil Microbiology and Biochemistry), Moscow: MGU, 1991.Google Scholar
  4. 4.
    Lyakh, S.P., Mikrobnyi melanogenez i ego funktsii (Microbial Melanogenesis and Its Functions), Moscow: Nauka, 1981.Google Scholar
  5. 5.
    Orlov, D.S., Gumusovye kisloty pochv i obshchaya teoriya gumifikatsii (Soils Humic Acids and General Theory of Humification), Moscow: MGU, 1990.Google Scholar
  6. 6.
    Orlov, D.S. and Grishina, L.A., Praktikum po khimii gumusa (Practical Work on Humus Chemistry), Moscow: MGU, 1981.Google Scholar
  7. 7.
    Reisinger, O. and Kilbertus, G., Biodegradation et humification. I. Biologie de la formation des granules noirs par aureobasidium pullulans amand (De Bary), Bull. Acad. Soc. Lorraines Sci., 1972, vol. 11, no. 4, pp. 265–275.Google Scholar
  8. 8.
    Reisinger, O. and Kilbertus, G., Biodegradation et humification. III. Liberation des granules. Modele experimental en presence de bacteries et conclusion generales, Soil Biol. Biochem., 1973, vol. 5, no. 2, pp. 187–192.CrossRefGoogle Scholar
  9. 9.
    Reisinger, O. and Kilbertus, G., Biodegradation et humification. IV. Microorganismes intervenant dans la decomposition des cellules d’Aureobasidium pullulans Amaud (De Bary), Canad. J. Microbiol., 1974, vol. 20, no. 10, pp. 1387–1392.CrossRefGoogle Scholar
  10. 10.
    Schnitzer, M., Ortiz de Serra, M.I., and Ivarson, K., The Chemisty of Fungal Humic Acid-Like Polymers and of Soil Humic Acids, Soil Sci. Soc. Amer. Proc., 1973, vol. 37, no. 2, pp. 229–236.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2011

Authors and Affiliations

  • E. N. Tsyganova
    • 1
  • D. G. Zvyagintsev
    • 1
  • L. V. Lysak
    • 1
  • A. L. Stepanov
    • 1
  1. 1.Soil Science Faculty of Moscow State UniversityMoscowRussia

Personalised recommendations