Moscow University Soil Science Bulletin

, Volume 66, Issue 1, pp 24–31

Anaerobic methane oxidation in soils and water ecosystems

  • L. A. Pozdnyakov
  • A. L. Stepanov
  • N. A. Manucharova
Ecology

Abstract

The process of anaerobic methane oxidation has been studied for over 30 years on the example of bottom marine sediments and fresh water ecosystems. This paper presents a review of the results of these investigations. It is also demonstrated that this process can proceed not only in submerged but also in drained peat and automorphic sod-podzol soils. The latter soils continue to absorb methane after anaerobic conditions are created and an inhibitor of methane monooxygenase (acetylene) is introduced. Oxidated compounds (nitrates, sulphates) are stimulatory to gas absorption; deoxidated nitrogen compounds (ammonium chloride) do not produce significant changes. Incubation with the addition of nitrates and sulphates in an atmosphere of argon and methane results in an increase in the fraction and abundance of archaea in the soil. This is in agreement with the data obtained for aquatic inhabits.

Keywords

methane anaerobic methane oxidation denitrification peat soils 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gal’chenko, V.F., To the Problem of Methane Anaerobic Oxidation, Mikrobiol., 2004, vol. 73, no. 5, pp. 698–707.Google Scholar
  2. 2.
    Gal’chenko, V.F., Metanotrofnye bakterii (Metatrophic Bacterium), Moscow, 2001.Google Scholar
  3. 3.
    Gvozdev, R.I. and Akent’eva, N.P., Modern Conceptions on Structure and Functions of Methanemnooxygenase, in Biokhimiya i fiziologiya metilotrofov (Biochemistry and Physiology of Methylotrophs), Pushchino, 1987, pp. 33–50.Google Scholar
  4. 4.
    Kovalev, N.G., Pozdnyakov, A.I., Musekaev, D.A., and Pozdnyakova, L.A., Torf, torfyanye pochvy, udobreniya (Peat, Peat Soils, Fertilizers), Moscow: VNIIMZ, 1998.Google Scholar
  5. 5.
    Metody pochvennoi mikrobiologii i biokhimii (Methods of Soil Microbiology and Biochemistry), Zvyagintsev, D.G., Ed., Moscow: MGU, 1991.Google Scholar
  6. 6.
    Bergey’s Manual of Determinative Bacteriology, Baltimore: Williams & Wilkins Co., 1957; Moscow: Mir, 1997.Google Scholar
  7. 7.
    Otchet o nauchno-issledovatel’skoi rabote TsTBOS za 1973 god: razrabotka ekologicheskikh aspektov sel’skokhozyaistvennogo ispol’zovaniya torfyanikov i torfyanykh bolot (Research Report of Central Peat-Marsh Experimental Station for 1973: Development of Ecological Aspects of Peat Swamps and Peat Bogs Agriculture Utilization), Dmitrov, 1973, vol. 2.Google Scholar
  8. 8.
    Pozdnyakov, L.A., Electrical Parameters of Soils and Pedogenesis, Pochvoved., 2008, no. 10 [Eur. Soil Sci. (Engl. Transl.), 2008, vol. 41, no. 10, p. 1050].Google Scholar
  9. 9.
    Skrynnikova, I.N., Pochvennye protsessy v torfyanykh okul’turennykh pochvakh (Soil Processes in Peat Recultivated Soils), Moscow: AN USSR, 1961.Google Scholar
  10. 10.
    Stepanov, A.L. and Lysak, L.V., Metody gazovoi khromatografii v pochvennoi mikrobiologii (Methods of Gas Hromatography in the Soil Microbiology), Moscow: MAKS Press, 2002.Google Scholar
  11. 11.
    Stepanov, A.L. and Manucharova, N.A., Obrazovanie i pogloshchenie parnikovykh gazov v pochvennykh agregatakh (Greenhouse Gases Formation and Absorption by Soil Aggregates), Moscow: MGU, 2006.Google Scholar
  12. 12.
    Stepanov, A.L., Manucharova, N.A., and Polyanskaya, L.M., Bacteria Producing Nitrous Oxide in Soil Aggregates, Pochvoved., 1997, no. 8 [Eur. Soil Sci. (Engl. Transl.), 1997, vol. 30, no. 8, p. 863].Google Scholar
  13. 13.
    Amann, R.I., Krunholz, L., and Stahl, D.A., Fluorescent-Oligonucleotide Probing of Whole Cells for Determinative, Phylogenetic and Environmental Studies in Microbiology, J. Bacteriol., 1990, vol. 172, pp. 762–779.Google Scholar
  14. 14.
    Boetius, A., Ravenschlag, K., Schubert, C.J., et al., A Marine Microbial Consortium Apparently Mediating Anaerobic Oxidation of Methane, Nature, 2000, vol. 407, pp. 623–626.CrossRefGoogle Scholar
  15. 15.
    Eller, G., Kanel, L., and Kruger, M., Cooccurrence of Aerobic and Anaerobic Methane Oxidation in the Water Colum of Lake Plubsee, Appl. Environ. Microbiol., 2005, vol. 71, no. 12, pp. 8925–8928.CrossRefGoogle Scholar
  16. 16.
    Grossman, E.L., Cifuentes, L.A., and Cozzarelli, I.M., Anaerobic Methane Oxidation in a Landfill-Leachate Plume, Environ. Sci. Technol., 2002, vol. 36, no. 11, pp. 2436–2442.CrossRefGoogle Scholar
  17. 17.
    Ettwig, K.F., Shima, S., van de Pas-Schonen, K.T., et al., Denitrifying Bacteria Anaerobically Oxidize Methane in the Absence of Archaea, Environ. Microbiol., 2008, vol. 10, no. 11, pp. 3164–3173.CrossRefGoogle Scholar
  18. 18.
    Hallam, S.J., Putnam, N., Preston, C.M., et al., Reverse Methanogenesis: Testing the Hypothesis with Environmental Genomics, Science, 2004, vol. 305, pp. 1457–1462.CrossRefGoogle Scholar
  19. 19.
    Harder, J., Anaerobic Methane Oxidation by Bacteria Employing 14C-Methane Uncontaminated with 14C-Carbon Monoxide, Mar. Geol., 1997, no. 137, pp. 13–23.Google Scholar
  20. 20.
    Hinrichs, K.U. and Boetius, A., The Anaerobic Oxidation of Methane: New Insights in Microbial Ecology and Biogeochemistry, in Ocean Marin Systems, Weder, G., Billett, D., Hebbeln, D., et al., Eds., Berlin: Springer, 2002, pp. 457–477.Google Scholar
  21. 21.
    Hinrichs, K.U., Hayes, J.M., Sylva, S.P., et al., Methaneconsuming Archaebacteria in Marine Sediments, Nature, 1999, no. 398, pp. 802–805.Google Scholar
  22. 22.
    IPCC Third Assessment Report: Climate Change 2001. Working Group I: The Scientific Basis, Chapter 4, Available from: http://www.ipcc.ch/ipccreports/tar/wg1/127.htm
  23. 23.
    Kajikawa, H., Valdes, C., Hillman, K., et al., Methane Oxidation and Its Coupled Electron-Sink Reactions in Ruminal Fluid, Lett. Appl. Microbiol., 2003, vol. 36, pp. 354–357.CrossRefGoogle Scholar
  24. 24.
    Kravchenko, I.K., Methane Oxidation in Boreal Peat Soils Treated with Various Nitrogen Compounds, Plant Soil, 2002, no. 242, pp. 157–162.Google Scholar
  25. 25.
    Kumaraswamy, S., Ramakrishnan, B., and Sethunathan, N., Methane Production and Oxidation in an Anoxic Rice Soil as Influenced by Inorganic Redox Species, J. Environ. Quality, 2001, vol. 30, pp. 2195–2201.CrossRefGoogle Scholar
  26. 26.
    Losekann, T., Knittel, K., Nadalig, T., et al., Diversity and Abundance of Aerobic and Anaerobic Methane Oxidizers at the Haakon Mosby Mud Volcano, Barents Sea, Appl. Environ. Microbiol., 2007, vol. 73, no. 10, pp. 3348–3362.CrossRefGoogle Scholar
  27. 27.
    Moran, J.J., Beal, E.J., Vrentas, J.M., et al., Methyl Sulfides As Intermediates in the Anaerobic Oxidation of Methane, Environ. Microbiol., 2008, vol. 10, no. 1, pp. 162–173.Google Scholar
  28. 28.
    Moran, J.J., House, C.H., Freeman, K.H., and Ferry, J.G., Trace Methane Oxidation Studied in Several Euryarchaeota Under Diverse Conditions, Archaea, 2005, vol. 1, pp. 303–309.CrossRefGoogle Scholar
  29. 29.
    Murase, J. and Kimura, M., Methane Production and Its Fate in Paddy Fields: IV. Sources of Microorganisms and Substrates Responsible for Anaerobic Methane Oxidation in Subsoil, Soil Sci. Plant. Nutr., 1994, vol. 40, no. 1, pp. 57–61.Google Scholar
  30. 30.
    Murase, J. and Kimura, M., Methane Production and Its Fate in Paddy Fields: VI. Anaerobic Oxidation of Methane in Plow Layer Soil, Soil Sci. Plant. Nutr., 1994, vol. 40, no. 3, pp. 505–514.Google Scholar
  31. 31.
    Murase, J. and Kimura, M., Methane Production and Its Fate in Paddy Fields: VII. Electron Acceptors Responsible for Anaerobic Methane Oxidation, Soil Sci. Plant. Nutr., 1994, vol. 40, no. 4, pp. 647–654.Google Scholar
  32. 32.
    Nauhaus, K., Boetius, A., Kruger, M., and Widdel, F., In vitro Demonstration of Anaerobic Oxidation of Methane Coupled to Sulphate Reduction in Sediment from a Marine Gas Hydrate Area, Environ. Microbiol., 2002, no. 4, pp. 296–305.Google Scholar
  33. 33.
    Orphan, V.J., House, C.H., Hinrichs, K.-U., et al., Methane-Consuming Archaea Revealed by Directly Coupled Isotopic and Phylogenetic Analysis, Science, 2001, vol. 293, pp. 484–487.CrossRefGoogle Scholar
  34. 34.
    Raghoebarsing, A.A., Pol, A., van de Pas-Schoonen, K.T., et al., A Microbial Consortium Couples Anaerobic Methane Oxidation to Denitrification, Nature, 2006, vol. 440, pp. 918–921.CrossRefGoogle Scholar
  35. 35.
    Raskin, L., Stromley, J.M., Rittmann, B.E., and Stahl, D.A., Group-Specific 16S rRNA Hybridization Probes to Describe Natural Communities of Methanogens, Appl. Environ. Microbiol., 1994, vol. 95, pp. 83–90.Google Scholar
  36. 36.
    Smemo, K.A. and Yavitt, J.B., Evidence for Anaerobic CH4 Oxidation in Freshwater Peatlands, Geomicrobiol. J., 2007, vol. 24, pp. 583–597.CrossRefGoogle Scholar
  37. 37.
    Sorensen, K.B., Finster, K., and Ramsing, N.B., Thermodynamic and Kinetic Requirements in Anaerobic Methane Oxidizing Consortia Exclude Hydrogen, Acetate, and Methanol as Possible Electron Shuttles, Microbiol. Ecol., 2001, vol. 42, pp. 1–10.Google Scholar
  38. 38.
    Stahl, D.A. and Amann, R., Development and Application of Nucleic Acid Probes, in Nucleic Acid Techniques in Bacterial Systematics, New York: Wiley, 1991, pp. 205–248.Google Scholar
  39. 39.
    Zehnder, A.J.B. and Brok, T.D., Anaerobic Methane Oxidation: Occurrence and Ecology, Appl. Environ. Microbiol., 1980, vol. 39, no. 1, pp. 194–204.Google Scholar

Copyright information

© Allerton Press, Inc. 2011

Authors and Affiliations

  • L. A. Pozdnyakov
    • 1
  • A. L. Stepanov
    • 1
  • N. A. Manucharova
    • 1
  1. 1.Soil Science Faculty of Moscow State UniversityMoscowRussia

Personalised recommendations