Moscow University Soil Science Bulletin

, Volume 66, Issue 1, pp 18–23

Biological activity of the coprolites of earthworms

Ecology

Abstract

The most important indicators of biological activity (respiration, methane genesis, nitrogen fixation, denitrification, and size and structure of the microbial population) were determined in coprolites of two types of earthworms (Lumbricus rubellus considered as the “litter” type and Aporrectodea rosea as the “soil” type) in the model experiment, in which the earthworms were kept separately and together, as in soddy-podzolic loamy soil. The biological activity of coprolites was significantly higher than in the soil and varied between worm species.

Keywords

earthworms coprolites soil biological activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Byzov, B.A., Zoomikrobnye vzaimodeistviya v pochve (Zoomicrobial Interactions in the Soil), Moscow: GEOS, 2003.Google Scholar
  2. 2.
    Gilyarov, M.S., Zoologicheskii metod diagnostiki pochv (Zoological Method for Soils Diagnostic), Moscow: Nauka, 1965.Google Scholar
  3. 3.
    Grishina, L.G., Gumusoobrazovanie i gumusovoe sostoyanie pochv (Humus Formation and Soils Humus State), Moscow: MGU, 1986, pp. 50–56.Google Scholar
  4. 4.
    Zrazhevskii, A.I., Dozhdevye chervi kak faktor plodorodiya lesnykh zemel’ (Earthworms as a Factor of Forest Soils Fertility), Kiev, 1957.Google Scholar
  5. 5.
    Ishchenko, I.A., Interactions between Earthworms and Microfunguses, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 1995.Google Scholar
  6. 6.
    Karpachevskii, L.O., Ekologicheskoe pochvovedenie (Ecological Soil Science), Moscow: GEOS, 2005.Google Scholar
  7. 7.
    Kozlovskaya, L.S., Rol’ bespozvonochnykh v transformatsii organicheskogo veshchestva bolotnykh pochv (Role of Invertebrates in Organic Matter Transformation in Bog Soils), Leningrad: Nauka, 1976.Google Scholar
  8. 8.
    Kozlovskaya, L.S., Archegova, I.B., and Rakova, N.N., Biochemical Effect of Soil Invertebrates onto Plant Residues, in Bolotnye biogeotsenozy i ikh izmeneniya v rezul’tate antropogennogo vozdeistviya (Helobious Biocoenosis and Their Variations due to Anthropogenic Impact), Leningrad: Nauka, 1983.Google Scholar
  9. 9.
    Metody pochvennoi mikrobiologii i biokhimii (Methods of Soil Microbiology and Biochemistry), Zvyagintsev, D.G., Ed., Moscow: MGU, 1991.Google Scholar
  10. 10.
    Panikov, N.S., Gorbenko, A.Yu., and Zvyagintsev, D.G., Mezofauna Numerical Effect onto Plant Litter Decomposition Rate, Vestn. Mosk. Gos. Univ., Ser. 17. Pochvoved., 1985, no. 3.Google Scholar
  11. 11.
    Striganova, B.R., Pitanie pochvennykh saprofagov (Soil Saprophages Nutrition), Moscow: Nauka, 1980.Google Scholar
  12. 12.
    Striganova, B.R., Pantosh-Derimova, T.D., Mazantseva, G.P., and Tiunov, A.V., Earthworms Effect onto Biological Nitrogen Fixation in the Soil, Izv. Akad. Nauk SSSR, Ser. Biol., 1988, no. 5.Google Scholar
  13. 13.
    Tiunov, A.V., Metabiosis in the Soil System: the Earthworms Effect onto Soil Biota Structure and Behavior, Extended Abstract of Doctoral Sci. (Biol.) Dissertation, Moscow, 2007.Google Scholar
  14. 14.
    Tret’yakova, E.B., Dobrovol’skaya, T.G., Byzov, B.A., and Zvyagintsev, D.G., Bacterial Community, Association with Soil Invertebrates, Mikrobiol., 1996, vol. 65, no. 1.Google Scholar
  15. 15.
    Kharin, S.A., Microfunguses Habitation Associated with Earthworms, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 2008.Google Scholar
  16. 16.
    Anderson, J.M. and Bignell, D.E., Bacteria in the Food, Gut Contents and Faeces of the Litter Feeding Millipede Glomeris marginata, Soil Biol. Biochem., 1980, vol. 12, 251–254.CrossRefGoogle Scholar
  17. 17.
    Citernesi, V., Neglia, R., Serriti, A., et al., Nitrogen Fixation in the Gasteroenteric Cavity of Soil Animals, Soil Biol. Biochem., 1977, vol. 9, pp. 71–72.CrossRefGoogle Scholar
  18. 18.
    Egert, M., Marhan, S., Wagner, B., et al., Molecular Profiling of 16S RRNA Genes Reveals Diet-Related Differences of Microbial Communities in Soil, Gut, and Casts of Lumbricus Terrestris L. (Oligochaeta: Lumbricidae), FEMS Microbiol. Ecol., 2004, vol. 48, no. 2.Google Scholar
  19. 19.
    Furlong, M.A., Singleton, D.R., Coleman, D.C., and Whitman, W.B., Molecular and Culture-Based Analyses of Prokaryotic Communities from and Agricultural Soil and the Burrows and Casts of the Earthworm Lumbricus Rubellus, Appl. Environ. Microbiol., 2002, vol. 68, no. 3.Google Scholar
  20. 20.
    Hanlon, R.G.D., Some Factors Influencing Microbial Growth on Soil Animal Faeces, Pedobiol., 1981, vol. 21, nos. 3–4.Google Scholar
  21. 21.
    Horn, M.A., Schramm, A., and Drake, H.L., The Earthworm Gut: An Ideal Habitat for Ingested N2O-Producing Microorganisms, Appl. Environ. Microbiol., 2003, vol. 69, no. 3.Google Scholar
  22. 22.
    Kaplan, D.L. and Hartenstein, R., Absence of Nitrogenase and Nitrate Reductase in Soil Macroinvertebrates, Soil Sci., 1977, vol. 124, pp. 328–331.CrossRefGoogle Scholar
  23. 23.
    Karsten, G.R. and Drake, H.L., Comparative Assessment of the Aerobic and Anaerobic Microfloras of Earthworm Guts and Forest Soils, Arch. Microbiol., 1995, vol. 61, no. 3.Google Scholar
  24. 24.
    Karsten, G.R. and Drake, H.L., Denitrifying Bacteria in the Earthworm Gastrointestinal Tract and in vivo Emission of Nitrous Oxide (N2O) by Earthworms, Appl. Environ. Microbiol., 1997, vol. 63, pp. 1878–1882.Google Scholar
  25. 25.
    Lee, K.E., Earthworms. Their Ecology and Relationships with Soils and Land Use, Sydney; Orlando; San Diego; New York; London; Toronto; Montreal; Tokyo: Acad. Press, 1985.Google Scholar
  26. 26.
    Maity, S., Padhy, P.K., and Chaudhury, S., The Role of Earthworm Lampito mauritii (Kinberg) in Amending Lead and Zinc Treated Soil, Bioresour. Technol., 2008, vol. 99, no. 15.Google Scholar
  27. 27.
    Makeschin, F., Earthworms (Lumbricidae: Oligochaeta): Important Promoters of Soil Development and Soil Fertility, in Fauna in Soil Ecosystems. Recycling Processes, Nutrient Fluxes and Agricultural Production, Benckiser, G., Ed., New York, 1997.Google Scholar
  28. 28.
    Ozawa, T., Risal, C.P., and Yanagimoto, R., Increase in the Nitrogen Content of Soil by the Introduction of Earthworms Into Soil, Soil Sci. Plant Nutrition, 2005, vol. 51, no. 6.Google Scholar
  29. 29.
    Parkin, T.V. and Berry, E.C., Mictobial Nitrogen Transformation in Earthworm Burrows, Soil Biol. Biochem., 1999, vol. 31, pp. 1765–1771.CrossRefGoogle Scholar
  30. 30.
    Piearce, T.G., Gut Contents of Some Lumbricid Earthworms, Pedobiol, 1978, vol. 18, pp. 153–157.Google Scholar
  31. 31.
    Simek, M. and Pizl, V., The Effect of Earthworms (Lumbricidae) on Nitrogenase Activity in Soil, Biol. Fertil. Soils, 1989, vol. 7, pp. 370–373.CrossRefGoogle Scholar
  32. 32.
    Tiunov, A. and Scheu, S., Microbial Respiration, Biomass and Nutrient Status in Burrow Walls of Lumbricus Terrestris L. (Lumbricidae), Soil Biol. Biochem., 1999, vol. 31, pp. 2039–2048.CrossRefGoogle Scholar
  33. 33.
    Zhang, H. and Schrader, S., Earthworm Effects on Selected Physical and Chemical Properties of Soil Aggregates, Biol. Fertil. Soils, 1993, vol. 15, no. 3.Google Scholar

Copyright information

© Allerton Press, Inc. 2011

Authors and Affiliations

  • N. V. Kostina
    • 1
  • T. V. Bogdanova
    • 1
  • M. M. Umarov
    • 1
  1. 1.Faculty of Soil ScienceMoscow State UniversityMoscowRussia

Personalised recommendations