Advertisement

Automatic Control and Computer Sciences

, Volume 52, Issue 5, pp 354–364 | Cite as

Interpolation Model Predictive Control of Nonlinear Systems Described by Quasi-LPV Model

  • Meng ZhaoEmail author
  • Canchen Jiang
  • Xiaoming Tang
  • Minghong She
Article
  • 20 Downloads

Abstract

This paper investigates the interpolation model predictive control (MPC) algorithm for nonlinear discrete-time systems, which can be represented by affine linear parameter varying (LPV) model. The general nonlinear model is transformed into the quasi-LPV model, then the equivalent polytopic LPV model and disturbed Linear time-invariant (LTI) model are obtained. Therefore, a finite-horizon interpolation MPC algorithm based ellipsoidal invariant set (EIS) is proposed. For comparison, the existing zero-horizon interpolation MPC algorithm, based on EIS, is also described to display the advantages of proposed algorithm. By virtue of the finite-horizon technique, the feasible region of proposed algorithm is much larger than zero-horizon interpolation MPC algorithm. An illustrative example is given to verify the effectiveness of proposed algorithms.

Keywords:

interpolation method model predictive control (MPC) nonlinear systems LPV model 

Notes

ACKNOWLEDGMENTS

This work was supported by the Natural Science Foundation of Hainan Province of China (grant no. 20166213), National Natural Science Foundation of China (grant no. 61403055), Research Project of Chongqing Science and Technology Commission (grant no. cstc2014jcyjA40005), and the Scientific Research Foundation of Hainan University (grant no. kyqd1575).

REFERENCES

  1. 1.
    Zhao, Y., Huang, B., Su, H.Y., and Chu, J., Prediction error method for identification of LPV models, J. Process Control, 2012, vol. 22, no. 1, pp. 180–193.CrossRefGoogle Scholar
  2. 2.
    Verdult, V. and Verhaegen, M., Kernel methods for subspace identification of multivariable LPV and bilinear systems, Automatica, 2005, vol. 41, no. 9, pp. 1557–1565.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Rotondo, D., Nejjari, F., and Puig, V., Quasi-LPV modeling, identification and control of a twin rotor MIMO system, Control Eng. Pract., 2013, vol. 21, no. 6, pp. 829–846.CrossRefGoogle Scholar
  4. 4.
    Polat, I., Eskinat, E., and Kose, I.E., Dynamic output feedback control of quasi-LPV mechanical systems, IET Control Theory Appl., 2007, vol. 1, no. 4, pp. 1114–1121.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kwiatkowski, A., Boll, M.T., and Werner, H., Automated generation and assessment of affine LPV models, Proc. 45th IEEE Conf. Decis. Control, San Diego, CA, 2006.Google Scholar
  6. 6.
    Petreczky, M. and Mercere, G., Affine LPV systems: Realization theory, input-output equations and relationship with linear switched systems, Proc. 51st IEEE Conf. Decis. Control, Hawaii, 2012.Google Scholar
  7. 7.
    Sun, X.D. and Postlethwaite, I., Affine LPV modelling and its use in gain-scheduled helicopter control, UKACC International Conference on Control '98 (Conf. Publ. No. 455), 1998.Google Scholar
  8. 8.
    Casavola, A., Famularo, D., and Franze, G., Predictive control of constrained nonlinear systems via LPV linear embeddings, Int. J. Robust Nonlinear Control, 2003, vol. 13, nos. 3–4, pp. 281–294.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Zhao, M. and Li, S.Y., An off-line formulation of min-max MPC for nonlinear systems via multiple LPV embeddings, Proc. 7th World Congr. Intell. Control Autom., Chongqing, 2008.Google Scholar
  10. 10.
    Zhao, M., Li, N., and Li, S.Y., Min-max model predictive control for constrained nonlinear systems via multiple LPV embeddings, Sci. China Ser. F-Inf. Sci., 2009, vol. 52, no. 7, pp. 1129–1135.zbMATHGoogle Scholar
  11. 11.
    Mayne, D.Q., Rawlings, J.B., Rao, C.V., and Scokaert, P.O.M., Constrained model predictive control: Stability and optimality, Automatica, 2000, vol. 36, no. 6, pp. 789–814.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kothare, M.V., Balakrishanan, V., and Morari, M., Robust constrained model predictive control using linear matrix inequalities, Automatica, 1996, vol. 32, no. 10, pp. 1361–1379.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Wan, Z. and Kothare, M.V., An efficient off-line formulation of robust model predictive control using linear matrix inequalities, Automatica, 2003, vol. 39, no. 5, pp. 837–846.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ding, B., Modern Predictive Control, CRC Press, 2009.Google Scholar
  15. 15.
    Lu, Y. and Arkun, Y., Quasi-min-max MPC algorithms for LPV systems, Automatica, 2000, vol. 36, no. 4, pp. 527–540.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Bacic, M., Cannon, M., Lee, Y., and Kouvaritakis, B., General interpolation in MPC and its advantages, IEEE Trans. Autom. Control, 2003, vol. 48, no. 6, pp. 1092–1096.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pluymers, B., Rossiter, J.A., Suykens, J.A.K., and De Moor, B., Interpolation based MPC for LPV systems using polyhedral invariant sets, American Control Conf., Portland, OR, 2005.Google Scholar
  18. 18.
    Rossiter, J.A., Ding, Y., Pluymers, B., Suykens, J.A.K., and De Moor, B., Interpolation based robust MPC with exact constraint handling, Proc. 44th IEEE Conf. Decis. Control, European Control Conf., Seville, 2005.Google Scholar
  19. 19.
    Rossiter, J.A., Kouvaritakis, B., and Bacic, M., Interpolation based computationally efficient predictive control, Int. J. Control, 2004, vol. 77, no. 3, pp. 290–301.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lee, Y.I., Cannon, M., and Kouvaritakis, B., Extended invariance and its use in model predictive control, Automatica, 2005, vol. 41, no. 12, pp. 2163–2169.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rossiter, J.A. and Grieder, P., Using interpolation to improve efficiency of multiparametric predictive control, Automatica, 2005, vol. 41, no. 4, pp. 637–643.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ding, Y., and Rossiter, J.A., Comparisons of interpolation methods for the uncertain case, American Control Conf., New York, 2007.Google Scholar
  23. 23.
    Balandat, M., Interpolation in output-feedback tube-based robust MPC, Proc. of the 50th IEEE Conf. Decis. Control, European Control Conf., Orlando, FL, 2011.Google Scholar
  24. 24.
    Sui, D. and Ong, C.J., Interpolated model predictive controller for linear systems with bounded disturbances, American Control Conf., New York, 2007.Google Scholar
  25. 25.
    Sui, D., Feng, L., Ong, C.J., and Hovd, M., Robust explicit model predictive control for linear systems via interpolation techniques, Int. J. Robust Nonlinear Control, 2010, vol. 20, no. 10, pp. 1166–1175.MathSciNetzbMATHGoogle Scholar
  26. 26.
    Pluymers, B., Rossiter, J.A., Suykens, J.A.K., and De Moor, B., The efficient computation of polyhedral invariant sets for linear systems with polytopic uncertainty, American Control Conf., Portland, 2005.Google Scholar
  27. 27.
    Blanchini, F., Set invariance in control, Automatica, 1999, vol. 35, no. 11, pp. 1747–1767.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Rakovic, S.V., Kerrigan, E.C., Kouramas, K.I., and Mayne, D.Q., Invariant approximations of the minimal robust positively invariant set, IEEE Trans. Autom. Control, 2005, vol. 50, no. 3, pp. 406–410.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Rossiter, J.A., Model-Based Predictive Control—A Practical Approach, CRC Press, 2003.CrossRefGoogle Scholar
  30. 30.
    Mayne, D.Q., Seron, M.M., and Rakovi, S.V., Robust model predictive control of constrained linear systems with bounded disturbances, Automatica, 2005, vol. 41, no. 2, pp. 219–224.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zhao, M. and Ding, B., Distributed model predictive control for constrained nonlinear systems with decoupled local dynamics, ISA Trans., 2014, vol. 55, no. 1, pp. 1–22.CrossRefGoogle Scholar
  32. 32.
    Lofberg, J., YALMIP: A toolbox for modeling and optimization in MATLAB, IEEE Int. Symp. Comput. Aided Control Syst. Design, Taipei, 2004.Google Scholar
  33. 33.
    Ding, B. and Li, S.Y., Design and analysis of constrained nonlinear quadratic regulator, ISA Trans., 2003, vol. 42, no. 2, pp. 251–258.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Meng Zhao
    • 1
    Email author
  • Canchen Jiang
    • 1
  • Xiaoming Tang
    • 2
  • Minghong She
    • 3
  1. 1.College of Mechanical and Electrical Engineering, Hainan UniversityHaikouChina
  2. 2.College of Automation, Chongqing University of Posts and TelecommunicationsChongqingChina
  3. 3.College of Automation, Chongqing UniversityChongqingChina

Personalised recommendations