Advertisement

Automatic Control and Computer Sciences

, Volume 50, Issue 6, pp 441–452 | Cite as

An adaptive technique for trajectory tracking control of a wheeled mobile robots without velocity measurements

  • Jafar Taheri-KalaniEmail author
  • NadAli Zarei
Article

Abstract

This paper addresses an adaptive method for designing a sensorless trajectory tracking control scheme for a wheeled mobile robot. In order to reduce the cost of the robot, a new Nonlinear Observer (NOB) is used to leave out velocity sensors in the robot. Also, an adaptive model reference technique is used for designing the dynamic controller. In order to ensure the implementability of proposed controller, dynamic controller and nonlinear observer are designed in the presence of uncertainties. In addition, the Observer-based Kinematic Controller (OKC) is designed in the presence of sliding velocity. In order to improve the performance of the kinematic controller, sliding velocity is estimated and used for modification of kinematic controller. Finally, the effectiveness of the proposed method is demonstrated by simulations.

Keywords

Nonlinear Observer (NOB) Observer-based Kinematic Controller (OKC) wheeled mobile robot adaptive model reference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jiang Zhong-Ping and Henk Nijmeijer, Tracking control of mobile robots: a case study in backstepping, Automatica, 1997, vol. 33, no. 7, pp. 1393–1399.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Fukao Takanori, Hiroshi Nakagawa, and Norihiko Adachi, Adaptive tracking control of a nonholonomic mobile robot, IEEE Trans. Rob. Autom., 2000, vol. 16, no. 5, pp. 609615.CrossRefGoogle Scholar
  3. 3.
    Jiang Zhong-Ping, Erjen Lefeber, and Henk Nijmeijer, Saturated stabilization and tracking of a nonholonomic mobile robot, Syst. Control Lett., 2001, vol. 42, no. 5, pp. 327–332.CrossRefGoogle Scholar
  4. 4.
    Do Khac Duc, Zhong-Ping Jiang, and Jie Pan, Simultaneous tracking and stabilization of mobile robots: An adaptive approach, IEEE Trans. Autom. Control, 2004, vol. 49, no. 7, pp. 1147–1152.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Huang Jiangshuai, Changyun Wen, Wei Wang, and Zhong-Ping Jiang, Adaptive stabilization and tracking control of a nonholonomic mobile robot with input saturation and disturbance, Syst. Control Lett., 2013, vol. 62, no. 3, pp. 234–241.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kanayama Yutaka, Yoshihiko Kimura, Fumio Miyazaki, and Tetsuo Noguchi, A stable tracking control method for an autonomous mobile robot, Proc. IEEE Int. Conf. Rob. Autom., 1990, pp. 384–389.CrossRefGoogle Scholar
  7. 7.
    Martins, N.A., Elyoussef, E.S., Bertol, D.W., De Pieri, E.R., Moreno, U.F., and Castelan, E. de B., Trajectory tracking of a nonholonomic mobile robot with kinematic disturbances: A variable structure control design, IEEE Latin Am. Trans., 2011, vol. 9, no. 3, pp. 276–283.CrossRefGoogle Scholar
  8. 8.
    Martins, F.N., Celeste, W.C., Carelli, R., Sarcinelli-Filho, M., and Bastos-Filho, T.F., An adaptive dynamic controller for autonomous mobile robot trajectory tracking, Control Eng. Pract., 2008, vol. 16, no. 11, pp. 1354–1363.CrossRefGoogle Scholar
  9. 9.
    Scaglia, G., Rosales, A., Quintero, L., Mut, V., and Agarwal, R., A linear-interpolation-based controller design for trajectory tracking of mobile robots, Control Eng. Pract., 2010, vol. 18, no. 3, pp. 318–329.CrossRefGoogle Scholar
  10. 10.
    Chwa Dongkyoung, Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates, IEEE Trans. Control Syst. Technol., 2004, vol. 12, no. 4, pp. 637–644.CrossRefGoogle Scholar
  11. 11.
    Muhammad, A., Khan, M.J., and Cai, N., Adaptive sliding mode dynamic controller with integrator in the loop for nonholonomic wheeled mobile robot trajectory tracking, Int. J. Control, 2014, vol. 87, no. 5, pp. 964–975.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Taheri-Kalani, J. and Khosrowjerdi, M.J., Adaptive trajectory tracking control of wheeled mobile robots with disturbance observer, Int. J. Adapt. Control Signal Process., 2014, vol. 28, no. 1, pp. 14–27.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chwa Dongkyoung, Fuzzy adaptive tracking control of wheeled mobile robots with state-dependent kinematic and dynamic disturbances, IEEE Trans. Fuzzy Syst., 2012, vol. 20, no. 3, pp. 587–593.CrossRefGoogle Scholar
  14. 14.
    Do Khac Duc, Zhong-Ping Jiang, and Jie Pan, A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots, IEEE Trans. Rob. Autom., 2004, vol. 20, no. 3, pp. 589–594.CrossRefGoogle Scholar
  15. 15.
    Elzbieta, J., A velocity observer design for tracking task-based motions of unicycle type mobile robots, Commun. Nonlinear Sci. Numer. Simul., 2011, vol. 16, no. 5, pp. 2301–2307.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Huang Jiangshuai, Changyun Wen, Wei Wang, and Zhong-Ping Jiang, Adaptive output feedback tracking control of a nonholonomic mobile robot, Automatica, 2014, vol. 50, no. 3, pp. 821–831.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Shojaei Khoshnam, Neural adaptive robust output feedback control of wheeled mobile robots with saturating actuators, Int. J. Adapt. Control Signal Process., 2015, vol. 29, pp. 855–876.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Shi Shang, Xin Yu, and Suiyang Khoo, Robust finite-time tracking control of nonholonomic mobile robots without velocity measurements, Int. J. Control, 2016, vol. 89, no. 2, pp. 411–423.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    De La Cruz, C. and Carelli, R., Dynamic modeling and centralized formation control of mobile robots, IEEE 32nd Annual Conference on Industrial Electronics, IECON 2006, 2006, pp. 3880–3885.CrossRefGoogle Scholar
  20. 20.
    Liu Zeng Lian and Svoboda, J., A new control scheme for nonlinear systems with disturbances, IEEE Trans. Control Syst. Technol., 2006, vol. 14, no. 1, pp. 3880–3885.Google Scholar
  21. 21.
    Karagiannis, D., Astolfi, A., and Ortega, R., Two results for adaptive output feedback stabilization of nonlinear systems, Automatica, 2003, vol. 39, no. 5, pp. 857–866.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  1. 1.Department of Electrical EngineeringShahid Beheshti UniversityTehranIran
  2. 2.Department of EngineeringQadr Research Center, Imam Housein UniversityTehranIran

Personalised recommendations