Automatic Control and Computer Sciences

, Volume 49, Issue 6, pp 354–365 | Cite as

Comparison of modular numbers based on the chinese remainder theorem with fractional values

  • N. I. Chervyakov
  • A. S. Molahosseini
  • P. A. Lyakhov
  • M. G. Babenko
  • I. N. Lavrinenko
  • A. V. Lavrinenko


New algorithms for determining the sign of a modular number and comparing numbers in a residue number system (RNS) have been developed using the Chinese remainder theorem with fractional values. These algorithms are based on calculations of approximate values of fractional values determined by moduli of the system. Instrumental implementations of the new algorithms are proposed and examples of their applications are given. Modeling these developments on Xilinx Kintex 7 FPGA showed that the proposed methods of decrease computational complexity of determining signs and comparing numbers in the RNS compared to that in well-known architectures based on the Chinese remainder theorem with generalized positional notation.


residue number system Chinese remainder theorem modular arithmetic positional characteristic fractional values approximate method generalized positional notation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chervyakov, N.I., Sakhnyuk, P.A., Shaposhnikov, A.V., and Makokha, A.N., Neirokomp’yutery v ostatochnykh klassakh. Uchebnoe posobie dlya vuzov (Neurocomputers in Residual Classes. Textbook for High Schools), Moscow: Radiotekhnika, 2003.Google Scholar
  2. 2.
    Chervyakov, N.I., Sakhnyuk, P.A., Shaposhnikov, A.V., and Ryadnov, S.A., Modulyarnye parallel’nye vychislitel’nye struktury neiroprotsessornykh system (Modular Parallel Computing Structures of Neuroprocessor Systems), Moscow: Fizmatlit, 2003.Google Scholar
  3. 3.
    Szabo, N.S. and Tanaka, R.I., Residue Arithmetic and Its Application to Computer Technology, McGraw-Hill, 1967.Google Scholar
  4. 4.
    Omondi, A. and Premkumar, B., Residue Number Systems. Theory and Implementation, London: Imperial College Press, 2007.MATHGoogle Scholar
  5. 5.
    Reddy, K.S., Akshit, S., and Sahoo, S.K., A new approach for high performance RNS-FIR filter using the moduli set, Proc. IEEE Symp. on Computer Applications and Industrial Electronics (ISCAIE), Penang, Malaysia, 2014, pp. 136–140.Google Scholar
  6. 6.
    Chervyakov, N.I., Lyakhov, P.A., and Babenko, M.G., Digital filtering of images in a residue number system using finite-field wavelets, Autom. Control Comput. Sci., 2014, vol. 48, no. 3, pp. 180–189.CrossRefGoogle Scholar
  7. 7.
    Alia, G. and Martinelli, E., NEUROM: A ROM based RNS digital neuron, Neuron Networks, 2005, no. 18, pp. 179–189.CrossRefGoogle Scholar
  8. 8.
    Yatskiv, V., Su, J., Yatskiv, N., Sachenko, A., and Osolinskiy, O., Multilevel method of data coding in WSN, Proc. IEEE 6th Int. Conf. on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), 2011, pp. 863–866.CrossRefGoogle Scholar
  9. 9.
    Gomathisankaran, M., Tyagi, A., and Namuduri, K., HORNS: A homomorphic encryption scheme for cloud computing using residue number system, Proc. IEEE 45th Annual Conference on Information Sciences and Systems (CISS), 2011, pp. 1–5.Google Scholar
  10. 10.
    Akkal, M. and Siy, P., A new mixed radix conversion algorithm MRC-II, J. Syst. Archit., 2007, vol. 53, no. 9, pp. 577–586.CrossRefGoogle Scholar
  11. 11.
    Navi, K., Esmaeildoust, M., and Molahosseini, A.S., A general reverse converter architecture with low complexity and high performance, IEICE Trans. Inf. Syst., 2011, vol. E94-D, no. 2, pp. 264–273.CrossRefGoogle Scholar
  12. 12.
    Chervyakov, N.I., Babenko, M.G., Lyakhov, P.A., and Lavrinenko, I.N., An approximate method for comparing modular numbers and its application to the division of numbers in residue number systems, Cybern. Syst. Anal., 2014, vol. 50, no. 6, pp. 977–984.CrossRefGoogle Scholar
  13. 13.
    Molahosseini, A.S., Sorouri, S., and Zarandi, A.A.E., Research challenges in next-generation residue number system architectures, Proc. IEEE 7th International Conference on Computer Science & Education (ICCSE), 2012, pp. 1658–1661.Google Scholar
  14. 14.
    Gbolagade, K.A. and Cotofana, S.D., An O(n) residue number system to mixed radix technique, Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS 2009), 2009, pp. 521–524.Google Scholar
  15. 15.
    Hung, C.Y. and Parhami, B., An approximate sign detection method for residue numbers and its application to RNS division, Comput. Math. Appl., 1994, vol. 27, no. 4, pp. 23–25.MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Chervyakov, N.I., Methods and principles of modular neural computers, in “50 let modulyarnoi arifmetike”. Sbornik nauchnykh trudov (50 Years of Modular Arithmetic. Collection of Scientific Papers), Moscow: OAO Angstrem, MIET, 2005.Google Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • N. I. Chervyakov
    • 1
  • A. S. Molahosseini
    • 2
  • P. A. Lyakhov
    • 1
  • M. G. Babenko
    • 1
  • I. N. Lavrinenko
    • 1
  • A. V. Lavrinenko
    • 1
  1. 1.North Caucasus Federal UniversityStavropolRussia
  2. 2.Department of Computer EngineeringKerman Branch, Islamic Azad UniversityKermanIran

Personalised recommendations