Advertisement

Moscow University Geology Bulletin

, Volume 73, Issue 5, pp 397–406 | Cite as

Theoretical Modeling of the Regular Olivine Intergrowths in Mimetic Paramorphs from Ringwoodite and Wadsleyite

  • B. B. Shkursky
Article
  • 9 Downloads

Abstract

This work presents the results of theoretical modeling of regular misorientations of olivine grains in mimetic paramorphs from ringwoodite and wadsleyite, whose formation is expected during the rise of material from the mantle transition zone. The coordinates of the axes and angles of misorientation, which characterize ten operations of alignment in the pair intergrowths of olivine grains, eight of which are twins, are calculated. Possible conditions for the formation of the predicted mimetic paramorphs and the chances of their preservation are discussed. The calculated orientations are compared with the known olivine twin laws.

Keywords

mantle transition zone olivine ringwoodite wadsleyite mimetic paramorphs misorientation twins 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaogi, M., Ito, E., and Navrotsky, A., Olivine-modified spinel–spinel transitions in the system Mg2SiO4–Fe2-SiO4: calorimetric measurements, thermochemical calculation and geophysical application, J. Geophys. Res., 1989, vol. 94, pp. 15671–15685.CrossRefGoogle Scholar
  2. Azevedo, S. and Nespolo, M., Twinning in olivine group revisited, Europ. J. Miner., 2017, vol. 29, no. 2, pp. 213–226.CrossRefGoogle Scholar
  3. Dobrzhinetskaya, L.F., Deformatsii magmaticheskikh porod v usloviyakh glubinnogo tektogeneza (Deformations of Igneous Rocks under Conditions of Deep Tectonogenesis), Moscow: Nauka, 1989.Google Scholar
  4. Griffin, W.L., McGowan, N.M., Gonzalez-Jimenez, J.M., et al., Transition-zone mineral assemblages in peridotite massifs, Tibet: Implications for collision-zone dynamics and orogenic peridotites, Acta Geol. Sinica, 2015, vol. 89, no. 2, pp. 90–91.Google Scholar
  5. Griffin, B.W., Afonso, J.C., Belousova, E.A., et al., Mantle recycling: transition-zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications, J. Petrol., 2016, vol. 57, pp. 655–684.CrossRefGoogle Scholar
  6. Gulbin, Yu.L., Modelling nucleation and growth kinetics of garnet in medium-grade metapelites, Doctoral. (Geol.–Mineral.) Dissertation, St. Petersburg, 2016.Google Scholar
  7. Guyot, P. and Simon, J.P., Symmetrical high angle tilt boundary energy calculation in aluminium and lithium, Phys. Stat. Sol. (a), 1976, vol. 38, pp. 207–216.CrossRefGoogle Scholar
  8. Harte, B. and Cayzer, N., Decompression and unmixing of crystals included in diamonds from the mantle transition zone, Phys. Chem. Miner., 2007, vol. 34, pp. 647–656.CrossRefGoogle Scholar
  9. Hyde, B.G., Andersson, S., Bakker, M., et al., The (twin) composition plane as en extended defect and structurebuilding entity in crystals, Prog. Solid State Chem., 1979, vol. 12, pp. 273–327.CrossRefGoogle Scholar
  10. Kaminsky, F., Mineralogy of the lower mantle: a review of super-deep mineral inclusions in diamonds, Earth Sci. Rev., 2012, vol. 110, pp. 127–147.CrossRefGoogle Scholar
  11. Kerschhofer, L., Dupas, C., Liu, M., et al., Polymorphic transformations between olivine, wadsleyite and ringwoodite: mechanisms of intracrystalline nucleation and the role of elastic strain, Miner. Mag., 1998, vol. 62, pp. 617–638.CrossRefGoogle Scholar
  12. Kerschhofer, L., Rubie, D.C., Sharp, T.G., et al., Kinetics of intracrystalline olivine–ringwoodite transformation, Phys. Earth Planet. Inter., 2000, vol. 121, pp. 59–76.CrossRefGoogle Scholar
  13. Kitamura, M. and Yamada, H., Origin of sector trilling in cordierite in Daimonji hornfels, Kioto, Japan, Contrib. Mineral. Petrol., 1987, vol. 97, pp. 1–6.CrossRefGoogle Scholar
  14. Kubo, T., Ohtani, E., and Funakoshi, K., Nucleation and growth kinetics of the α–β transformations in Mg2SiO4 determined in situ by synchrotron powder X-ray diffraction, Am. Mineral., 2004, vol. 89, pp. 285–293.CrossRefGoogle Scholar
  15. Litvin, Y.A., Spivak, A.V., Solopova, N.A., and Dubrovinsky, L.S., On origin of lower-mantle diamonds and their primary inclusions, Phys. Earth Planet. Int., 2014, vol. 228, pp. 176–185.CrossRefGoogle Scholar
  16. Madon, M. and Poirier, J.P., Transmission electron microscope observation of α, β and γ (Mg, Fe)2SiO4 in shocked meteorites: Planar defects and polymorphic transitions, Phys. Earth Planet. Int., 1983, vol. 33, pp. 31–44.Google Scholar
  17. McNamara, D.D., Wheeler, J., Pearce, M., and Prior, D.J., Fabrics produced mimetically during static metamorphism in retrogressed eclogites from the Zermatt–Saas zone, Western Italian Alps, J. Struct. Geol., 2012, vol. 44, pp. 1–12.Google Scholar
  18. Miyahara, M., Ohtani, E., Kimura, M., et al., Coherent and subsequent incoherent ringwoodite growth in olivine of shocked L6 chondrites, Earth Planet. Sci. Lett., vol. 295, pp. 321–327.Google Scholar
  19. Ohuchi, T., Fujino, K., Kawazoe, T., and Irifune, T., Crystallographic preferred orientation of wadsleyite and ringwoodite: Effects of phase transformation and water on seismic anisotropy in the mantle transition zone, Earth Planet. Sci. Lett., 2014, vol. 397, pp. 133–144.CrossRefGoogle Scholar
  20. Pittarello, L., Ji, G., Yamaguchi, A., Schryvers, D., et al., From olivine to ringwoodite: a TEM study of a complex process, Meteorit. Planet. Sci., 2015, vol. 50, no. 5, pp. 944–957.CrossRefGoogle Scholar
  21. Poirier, J.P., Martensitic olivine–spinel transformation and plasticity of the mantle transition zone, in Anelasticity in the Earth. Geodyn. Ser., Washington, DC: Am. Geophys. Union, 1981, vol. 4, pp. 113–117.Google Scholar
  22. Punin, Yu.O. and Shtukenberg, A.G., Avtodeformatsionnye defekty kristallov (Autodeformation Defects in Crystals), St. Petersburg: St. Petersburg State Univ., 2008.Google Scholar
  23. Pushcharovsky, D.Yu., Transformations of minerals in deep geospheres, Vestn. Mosk. Univ., Ser. 4: Geol., 2004, no. 2, pp. 3–10.Google Scholar
  24. Putintseva, E.V. and Spiridonov, E.M., Penetration twins of olivine inalkaline melanocratic basalts from the collection of N.M. Przhevalsky, Izv. Vuzov. Geol. Razv., 2015, vol. 4, pp. 82–85.Google Scholar
  25. Ringwood, A.E., Composition and Petrology of the Earth’s Mantle, New York, McGraw-Hill, 1975.Google Scholar
  26. Satsukawa, T., Griffin, W.L., Piazolo, S., and O’Reilly, S.Y., Messengers from the deep: fossil wadsleyite–chromite microstructures from the mantle transition zone, Sci. Rep., 2015, vol. 5, p. 16484. doi 10.1038/srep16484CrossRefGoogle Scholar
  27. Schwindinger, K.R. and Anderson, A.T., Synneusis of Kilauea Iki olivines, Contrib. Mineral. Petrol., 1989, vol. 103, pp. 187–198.CrossRefGoogle Scholar
  28. Sirotkina, E.A., Bobrov, A.V., Bindi, L., and Irifune, T., Chromium-bearing phases in the Earth’s mantle: Evidence from experiments in the Mg2SiO4–MgCr2O4 system at 10–2.GPa and 1600 °C, Am. Mineral., 2018, vol. 103, pp. 151–160.CrossRefGoogle Scholar
  29. Smith, J.R., Miyajima, N., Huss, G.R., et al., Olivine–wadsleyite–pyroxene topotaxy: Evidence for coherent nucleation and diffusion-controlled growth at the 410-km discontinuity, Phys. Earth Planet. Int., 2012, vols. 200–201, pp. 85–91.Google Scholar
  30. Tackley, P.J. and Xie, S., The thermochemical structure and evolution of Earth’s mantle: Constraints and numerical models, Philos. Trans. R. Soc. London, A, 2002, vol. 360, pp. 2593–2609.CrossRefGoogle Scholar
  31. Welsch, B., Faure, F., Famin, V., et al., Dendritic crystallization: A single process for all the textures of olivine in basalts? J. Petrol., 2013, vol. 54, no. 3, pp. 539–574.CrossRefGoogle Scholar
  32. Wheeler, J., Prior, D.J., Jiang, Z., et al., The petrological significance of misorientations between grains, Contrib. Mineral. Petrol., 2001, vol. 141, pp. 109–124.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of GeologyMoscow State UniversityMoscowRussia

Personalised recommendations