Moscow University Geology Bulletin

, Volume 73, Issue 5, pp 467–471 | Cite as

Experimental Research on the Photodegradation of the Organic Compounds of Natural Waters

  • O. Yu. DrozdovaEmail author
  • N. A. Anokhina
  • V. V. Demin
  • S. A. Lapitskiy


The photodegradation of organo-mineral complexes in natural conditions was studied using samples of soil and swamp waters to study the effect of sunlight on the composition and properties of organic matter and metal forms dissolved in natural waters. The total contents of certain aliphatic and aromatic carboxylic acids increased in the samples after irradiation. Photodegradation of organic matter of the natural waters with the high Fe content is accompanied by the formation of colloidal particles (Fe hydroxides). The number of negatively-charged complexes of Ni, Cu, Zn, and Cd increased under insolation in swamp waters and decreased in soil waters.


organic matter photodegradation organo-mineral complexes natural waters metals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aleshina, A.R., The changes of bioavailability of heavy metals in natural waters during the photodestruction of organo-mineral complexes, in Mater. XXVII Mezhd. Mezhdistsiplin. konf. “Chelovek i priroda. Problemy sotsioestestvennykh issledovanii” (Proc. XXVII Int. Interdiscipl. Conf. “Man and Nature. Problems of Socio-Natural Research”), Moscow: MAKS-Press, 2017, pp. 14–15.Google Scholar
  2. Allard, B., Borrn, H., Petterson, C., and Zhang, G., Degradation of humic substances by UV-irradiation, Environ. Int., 1994, vol. 20, pp. 97–101.CrossRefGoogle Scholar
  3. Corin, N., Backlund, P., and Kulovaara, M., Degradation products formed during UV-irradiation of humic waters, Chemosphere, 1996, vol. 33, no. 2, pp. 245–255.CrossRefGoogle Scholar
  4. Cory, R.M., Ward, C.P., Crump, B.C., and Kling, G.W., Sunlight controls water column processing of carbon in arctic fresh waters, Science, 2014, vol. 345, pp. 925–928.CrossRefGoogle Scholar
  5. Drozdova, O.Yu., Oleynikova, O.V., Zavgorodnyaya, Yu.A., et al., The study of factors affecting the degradation of organometallic compounds in surface waters, in Mater. regional. naucho-prakt. konf. “Ekologicheskaya Bezopasnost’ territorii i akvatorii: regional’nye i global’nye problemy” (Proc. Reg. Sci.–Pract. Conf. “Ecological Safety of Territories and Water Areas: Regional and Global Problems”), Kerch: Kerch State MaritimeTechnol. Univ., 2016, pp. 77–81.Google Scholar
  6. Ilina, S.M., Drozdova, O.Yu., Lapitskiy, S.A., et al., Size fractionation and optical properties of dissolved organic matter in the continuum soil solution–bog–river and terminal lake of a boreal watershed (North Karelia, Russia), Organ. Geochem., 2014, vol. 66, pp. 14–24.CrossRefGoogle Scholar
  7. Kopácek, J., Hejzlar, J., Kana, J., Porcal, P., and Klementová, A., Photochemical, chemical, and biological transformations of dissolved organic carbon and its effect on alkalinity production in acidified lakes, Limnol. Oceanogr., 2003, vol. 48, no. 1, pp. 106–117.CrossRefGoogle Scholar
  8. Kulovaara, M., Light-induced degradation of aquatic humic substances by simulated sunlight, Int. J. Environ. Analyt. Chem., 1996, vol. 62, pp. 85–95.CrossRefGoogle Scholar
  9. Lapierre, J.-F. and del Giorgio, P.A., Partial coupling and differential regulation of biologically and photochemically labile dissolved organic carbon across boreal aquatic networks, Biogeosci., 2014, vol. 11, pp. 5969–5985.CrossRefGoogle Scholar
  10. Oleynik, G.N., Bacterial destruction organic matter in water bodies and water-courses, Vodn. Resur., 1991, no. 2, pp. 89–97.Google Scholar
  11. Oleynikova, O.V., Bychkov, A.Yu., Drozdova, O.Yu., et al., The influence of the process of photochemical destruction of organic matter on the microelement composition of the surface waters of the boreal zone, in Mater. Vseros. nauchn. konf. “Geokhimiya landshaftov” (k 100-letiyu A.I. Perel’mana) (Proc. All-Russ. Sci. Conf. “Geochemistry of Landscapes” (to 100th anniversary of A.I. Perelman), Moscow: MGU, 2016, pp. 394–396.Google Scholar
  12. Orlov, D.S., Guminovye veshchestva v biosfere (Humic Substances in Biosphere), Moscow: Nauka, 1993.Google Scholar
  13. Pokrovsky, O.S., Viers, J., Dupré, B., et al., Biogeochemistry of carbon, major and trace elements in watersheds of northern Eurasia drained to the Arctic ocean: the change of fluxes, sources and mechanisms under the climate warming prospective, C. R. Geosci., 2012, vol. 344, pp. 663–677.CrossRefGoogle Scholar
  14. Tranvik, L.J. and Bertilsson, S., Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth, Ecol. Lett., 2001, vol. 4, pp. 458–463.CrossRefGoogle Scholar
  15. Vähätalo, A.V. and Wetzel, R.G., Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months–years) exposures, Mar. Chem., 2004, vol. 89, pp. 313–326.CrossRefGoogle Scholar
  16. Wetzel, R.G., Hatcher, P.G., and Bianci, T.S., Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism, Limnol. Oceanogr., 1995, vol. 40, pp. 1369–1380.CrossRefGoogle Scholar
  17. Zepp, R.G., Callaghan, T.V., and Erickon, D.J., Effects of enhanced solar ultraviolet radiation on biogeochemical cycles, J. Photochem. Photobiol. Ser., 1998, vol. 46, pp. 69–82.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • O. Yu. Drozdova
    • 1
    Email author
  • N. A. Anokhina
    • 2
  • V. V. Demin
    • 2
  • S. A. Lapitskiy
    • 1
  1. 1.Department of GeologyMoscow State UniversityMoscowRussia
  2. 2.Department of Soil ScienceMoscow State UniversityMoscowRussia

Personalised recommendations