Moscow University Geology Bulletin

, Volume 73, Issue 1, pp 31–42 | Cite as

The Composition of Melt Inclusions in Minerals from Tephra of the Soil–Pyroclastic Cover of Simushir Island (Central Kuril Islands)

  • V. D. ShcherbakovEmail author
  • N. A. Nekrylov
  • G. G. Savostin
  • D. V. Popov
  • O. V. Dirksen


The compositions of approximately 70 naturally quenched melt inclusions in olivine, clinopyroxene, orthopyroxene, and plagioclase phenocrysts from tephra of the soil–pyroclastic cover of Simushir Island (Central Kuril Islands) were studied. The concentrations of the major rock-forming components, H2O, S, and Cl were analyzed in inclusions. The reconstructed melts contain 48.6–78.4 wt % SiO2, 0.3–8.26 wt % MgO, and 0.12–1.72 wt % K2O. The concentration of S and Cl in the melts changes regularly with increasing SiO2 content: from 0.14 to ~0.02 wt % S and from ~0.05 to ~0.28 wt % Cl. The content of H2O in parental melts is 4.2–4.5 wt %.


melt inclusions volatiles Simushir Kuril Islands 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alletti, M., Baker, D.R., Scaillet, B., et al., Chlorine partitioning between a basaltic melt and H2O–CO2 fluids at mount Etna, Chem. Geol., 2009, vol. 263, no. 1, pp. 37–50.CrossRefGoogle Scholar
  2. Blundy, J. and Cashman, K., Rapid decompression-driven crystallization recorded by melt inclusions from Mount St. Helens volcano, Geology, 2005, vol. 33, no. 10, pp. 793–796.CrossRefGoogle Scholar
  3. Botcharnikov, R.E., Behrens, H., Holtz, F., et al., Sulfur and chlorine solubility in Mt. Unzen rhyodacitic melt at 850°C and 200 MPa, Chem. Geol., 2004, vol. 213, no. 1, pp. 207–225.CrossRefGoogle Scholar
  4. Botcharnikov, R.E., Linnen, R.L., Wilke, M., et al., High gold concentrations in sulphide-bearing magma under oxidizing conditions, Nat. Geosci., 2011, vol. 4, no. 2, pp. 112–115.CrossRefGoogle Scholar
  5. Bucholz, C.E., Gaetani, G.A., Behn, M.D., and Shimizu, N., Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions. Earth Planet. Sci. Lett., 2013, vol. 374, pp. 145–155.CrossRefGoogle Scholar
  6. Danyushevsky, L.V. and Plechov, P., Petrology: integrated software for modeling crystallization processes, Geochem. Geophys. Geosyst., 2011, vol. 12, no. 7.Google Scholar
  7. Danyushevsky, L.V., Della-Pasqua, F.N., and Sokolov, S., Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications, Contrib. Mineral. Petrol., 2000, vol. 138, no. 1, pp. 68–83.CrossRefGoogle Scholar
  8. Ford, C.E., Russell, D.G., Craven, J.A., and Fisk, M.R., Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca, and Mn, J. Petrol., 1983, vol. 24, no. 3, pp. 256–266.CrossRefGoogle Scholar
  9. Gaetani, G.A., O’ Leary, J.A., Shimizu, N., et al., Rapid reequilibration of H2O and oxygen fugacity in olivinehosted melt inclusions, Geology, 2012, vol. 40, no. 10, pp. 915–918.CrossRefGoogle Scholar
  10. Gavrilenko, M., Herzberg, C., and Vidito, C.A., et al., Calcium- in-olivine geohygrometer and its application to subduction zone magmatism, J. Petrol., 2016, vol. 57, no. 9, pp. 1811–1832.Google Scholar
  11. Lloyd, A.S., Plank, T., Ruprecht, P., et al., Volatile loss from melt inclusions in pyroclasts of differing sizes, Contrib. Mineral. Petrol., 2013, vol. 165, no. 1, pp. 129–153.CrossRefGoogle Scholar
  12. Martynov, Yu.A., Khanchuk, A.I., Rybin, A.V., and Martynov, A.Yu Geochemistry and petrogenesis of volcanic rocks in the Kuril island arc, Petrology, 2010, vol. 18, no. 5, pp. 489–513.CrossRefGoogle Scholar
  13. Mironov, N., Portnyagin, M., and Botcharnikov, R., Quantification of the CO2 budget and H2O–CO2 systematics in subduction-zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure, Earth Planet. Sc. Lett., 2015, vol. 425, pp. 1–11.CrossRefGoogle Scholar
  14. Parfenova, O.V., Burikova, I.A., and Dril, S.I., The features of the compositional evolution of felsic rocks in the low potassium calc alkaline series of the Zavaritskii Volcano, Kuril Arc, Moscow Univ. Geol. Bull., 2016, vol. 71, no. 1, pp. 103–111.CrossRefGoogle Scholar
  15. Plechov, P.Yu., Metody izucheniya flyuidnykh i rasplavnykh vklyuchenii (Methods of Study of Fluid and Melt Inclusions), Moscow, 2014.Google Scholar
  16. Plechov, P., Blundy, J., Nekrylov, N., et al., Petrology and volatile content of magmas erupted from Tolbachik Volcano, Kamchatka, 2012-13, J. Volcanol. Geotherm. Res., 2015, vol. 307, pp. 182–199.CrossRefGoogle Scholar
  17. Popov D.V., Nekrylov N.A., Plechov P.Yu. The petrology of the Upper Albian tuffites from the Bakhchysarai district, southwestern Crimea, Mosc. Univ. Geol. Bull., 2016, vol. 71, no. 2, pp. 194–204.CrossRefGoogle Scholar
  18. Portnyagin, M., Hoernle, K., Plechov, P., et al., Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka arc, Earth Planet. Sc. Lett., 2007, vol. 255, no. 1, pp. 53–69.CrossRefGoogle Scholar
  19. Shishkina, T.A., Botcharnikov, R.E., Holtz, F. et al., Solubility of H2O-and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa, Chem. Geol., 2010, vol. 277, no. 1, pp. 115–125.CrossRefGoogle Scholar
  20. Tolstykh, M.L., Naumov, V.B., and Kononkova, N.N., Three Types of Melts Participated in the Formation of the Medvezh’ya Caldera, Iturup Island, South Kuriles, Geokhimiya, 1997, no. 4, pp. 391–397.Google Scholar
  21. Wallace, P.J., Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data, J. Volcanol. Geotherm. Res., 2005, vol. 140, no. 1, pp. 217–240.CrossRefGoogle Scholar
  22. Webster, J.D. and Botcharnikov, R.E., Distribution of sulfur between melt and fluid in S–O–H–C–Cl-bearing magmatic systems at shallow crustal pressures and temperatures, Rev. Mineral. Geochem., 2011, vol. 73, no. 1, pp. 247–283.CrossRefGoogle Scholar
  23. Zajacz, Z., Candela, P.A., Piccoli, P.M., and Sanchez-Valle, C., The partitioning of sulfur and chlorine between andesite melts and magmatic volatiles and the exchange coefficients of major cations, Geochim. Cosmochim. Acta, 2012, vol. 89, pp. 81–101.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. D. Shcherbakov
    • 1
    Email author
  • N. A. Nekrylov
    • 2
  • G. G. Savostin
    • 1
  • D. V. Popov
    • 3
  • O. V. Dirksen
    • 4
  1. 1.Department of GeologyMoscow State UniversityMoscowRussia
  2. 2.Fersman Mineralogical MuseumRussian Academy of SciencesMoscowRussia
  3. 3.Faculty of Earth SciencesUniversity of GenevaGenevaSwitzerland
  4. 4.Institute of Volcanology and Seismology, Far East BranchRussian Academy of SciencesPetropavlovsk-KamchatskyRussia

Personalised recommendations