Advertisement

Moscow University Geology Bulletin

, Volume 72, Issue 5, pp 299–304 | Cite as

Ca- and Mg-perovskite phases in the Earth’s mantle as a probable reservoir of Al: Computer-simulation evidence

  • E. I. Marchenko
  • N. N. Eremin
  • A. Yu. Bychkov
  • A. E. Grechanovskii
Article

Abstract

Semi-empirical and quantum chemical studies of Al atom energy in CaSiO3 and MgSiO3 with the perovskite-type structure at pressures and temperatures of the Earth’s mantle are reported. The phase diagram for CaSiO3 is reproduced and refined. Probable mechanisms of Al incorporation in the structures studied are considered. According to the results of the calculations, Al is preferably incorporated into MgSiO3, rather than into CaSiO3. Evaluation of the isomorphic capacity of perovskite phases in relation to Al shows that the Al content in MgSiO3 may reach 2.4 mol % at 120 GPa and 2400 K. CaSiO3 cannot be a source of Al atoms in the Earth’s mantle.

Keywords

computer simulation defects in perovskites Al-bearing perovskites CaSiO3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akber-Knutson, S., Steinle-Neumann, G., and Asimow, P.D., Effect of Al on the sharpness of the MgSiO3 perovskite to post-perovskite phase transition, Geophys. Res. Lett., 2005, vol. 32. no. 14, L14303.CrossRefGoogle Scholar
  2. Caracas, R. and Wentzcovitch, R., CaSiO3 perovskite at lower mantle pressures, Geophys. Res. Lett., 2005, vol. 32, no. 6, L06306.Google Scholar
  3. Chibisov A.N. Computer simulation of the point defect formation in MgSiO3-based ceramic materials, J. Struct. Chem., 2015, vol. 56, no. 3, pp. 454–457.CrossRefGoogle Scholar
  4. Eremin, N.N., Grechanovsky, A.E., and Marchenko, E.I., Atomistic and Ab initio modeling of CaAl2O4 highpressure polymorphs under Earth’s mantle conditions, Crys. Rep., vol. 61, no. 3, pp. 432−442.Google Scholar
  5. Gale, J.D., GULP: Capabilities and prospects, Z. Kristallogr., 2005, vol. 220, pp. 552–554.Google Scholar
  6. Giannozzi, P., Baroni S., Bonini, N., et al., Quantum Espresso: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter., 2009, vol. 21, no. 39, pp. 395–502.CrossRefGoogle Scholar
  7. Irifune, T., Absence of an aluminous phase in the upper part of the Earth’s lower mantle, Lett. Nature, 1994, vol. 370, pp. 131–133.CrossRefGoogle Scholar
  8. Irifune, T. and Tsuchiya, T., Mineralogy of the Earth–phase transitions and mineralogy of the lower mantle, Treatise Geophys., 2007, vol. 2, pp. 33–62.CrossRefGoogle Scholar
  9. Jung, D.Y. and Oganov, A.R., Ab initio study of the highpressure behavior of CaSiO3 perovskite, Phys. Chem. Minerals, 2005, vol. 32, pp. 146–153.CrossRefGoogle Scholar
  10. Kurashina, T., Hirose, K., Ono, S., et al., Phase transition in Al-bearing CaSiO3 perovskite: implications for seismic discontinuities in the lower mantle, Phys. Earth Planet. Inter., 2004, vol. 145, pp. 67–74.CrossRefGoogle Scholar
  11. Li, L., Weidner, D.J., Brodholt, J. et al., Phase stability of CaSiO3 perovskite at high pressure and temperature: Insights from Ab initio molecular dynamics, Phys. Earth Planet. Inter., 2006, vol. 155, pp. 260–268.CrossRefGoogle Scholar
  12. Magyari-Köpe, B., Vitos, L., Grimvall, G., et al., Lowtemperature crystal structure of CaSiO3 perovskite: an Ab-initio total energy study, Phys. Rev. B, 2002, vol. 65, no. 19, 193107.CrossRefGoogle Scholar
  13. Ono, S., Ohishi, Y., and Mibe, K., Phase transition of Caperovskite and stability of Al-bearing Mg-perovskite in the lower mantle, Am. Mineral., 2004, vol. 89, pp. 1480–1485.CrossRefGoogle Scholar
  14. Pedone, A., Malavasi, G., Menziani, M.C., et al., A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses, J. Phys. Chem. B, 2006, vol. 110, pp. 11780–11795.CrossRefGoogle Scholar
  15. Perdew, J. P. and Wang, Y., Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, 1992, vol. 45, no. 23, pp. 13244–13249.CrossRefGoogle Scholar
  16. Pushcharovskii, Yu.M. and Pushcharovskii, D.Yu., Geologiya mantii Zemli (Geology of the Earth’s Mantle), Moscow: GEOS, 2010.Google Scholar
  17. Ringwood, A.E., Composition and Petrology of the Earth’s Mantle, McGraw-Hill Comp. U.S., 1975.Google Scholar
  18. Shim, S.-H., Jeanloz, R., and Duffy, T.S., Tetragonal structure of CaSiO3 perovskite above 20 GPa, Geophys. Res. Lett., 2002, vol. 29, no. 24, pp. 21–66.CrossRefGoogle Scholar
  19. Stixrude, L., Cohen, R.E., Rici, Y., and Krakauer, A., Prediction of phase transition in CaSiO3 perovskite and implications for lower mantle structure, Am. Mineral., 1996, vol. 81, pp. 1293–1296.Google Scholar
  20. Swamy, V. and Dubrovinsky, L.S., Thermodynamic data for the phases in the CaSiO3 system, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 1181–1191.CrossRefGoogle Scholar
  21. Urusov, V.S. and Eremin, N.N., Atomisticheskoe komp’yuternoe modelirovanie struktury i svoistv neorganicheskikh kristallov i mineralov, ikh defektov i tverdykh rastvorov (Atomistic Computer Modeling of Structure and Properties of Inorganic Crystals and Minerals, Their Flaws and Solid Solutions), Moscow: GEOS, 2012, pp. 18–29.Google Scholar
  22. Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 1990, vol. 41, pp. 7892–7895.CrossRefGoogle Scholar
  23. Yamamoto, T., Yuen, D.A., and Ebisuzaki, T., Substitution mechanism of Al ions in MgSiO3 perovskite under high pressure conditions from first-principles calculations, Earth Planet. Sci. Lett., 2003, vol. 206, pp. 617–625.CrossRefGoogle Scholar
  24. Zhang, J. and Weidner, D.J., Thermal equation of state of aluminum-enriched silicate perovskite, Science, 1999, vol. 284, pp. 782–784.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • E. I. Marchenko
    • 1
  • N. N. Eremin
    • 1
  • A. Yu. Bychkov
    • 1
  • A. E. Grechanovskii
    • 2
  1. 1.Department of GeologyMoscow State UniversityMoscowRussia
  2. 2.Semenenko Institute of Geochemistry, Mineralogy, and Ore FormationNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations