Advertisement

Moscow University Geology Bulletin

, Volume 72, Issue 5, pp 339–348 | Cite as

Estimation of the heat-impact potential for stimulating the development of the deposits of the Bazhenov Formation according to the results of experimental studies

  • A. A. Erofeev
  • A. A. Pachezhercev
  • I. A. Karpov
  • N. V. Morozov
  • A. G. Kalmykov
  • A. N. Cheremisin
  • E. V. Kozlova
  • A. Yu. Bychkov
Article

Abstract

The influence of temperature on rock samples of the Bazhenov Formation is shown. The samples underwent pyrolysis at 300–480°C, as well as in closed autoclaves in the presence of water under formation pressure. The temperature impact at 400°C resulted in a decrease in the S2 pyrolytic peak by 90–95% and almost complete formation of the generation potential of the rocks. Microtomographic studies of samples combined with raster electron microscopy revealed a correlation between the variable reservoir properties of the rocks. At 350°C, the rocks are characterized by a system of fractures; as a result of impacts, the porosity and permeability can increase from several to several tens of times. Our results will allow more precise modeling of the influence of tertiary processes on the rocks of the Bazhenov Formation in order to increase the final oil recovery of the bed.

Keywords

Bazhenov Formation temperature impact reservoir properties pyrolysis change in structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekseev, Yu.V., and Erofeev, A.A., Pachezhertsev, A.A., et al., Prospects for use of thermochemical recovery methods for development of the Bazhenov Formation, Oil Industry, 2015, vol. 10, pp. 93–97.Google Scholar
  2. Behar, F., Beaumont, V., De B. Penteado, H.L., Rock-Eval 6 Technology: performances and developments, Oil Gas. Sci. Technol., 2001, vol. 56, no. 2, pp. 111–134.CrossRefGoogle Scholar
  3. Bychkov, A.Yu., Kalmykov, G.A., Bugaev, I.A., et al., Experimental investigations of hydrocarbon fluid recovery from hydrothermally treated rocks of the Bazhenov Formation, Moscow Univ. Geol. Bull., 2015, vol. 70, no. 4, pp. 299–304.CrossRefGoogle Scholar
  4. Chugunov, S.S., Kazak, A.V., and Cheremisin, A.N., Integration of X-ray micro computed tomography and focused ion-beam scanning electron microscopy data fore pore-scale characterization of Bazhenov Formation, Western Siberia, Oil Industry, 2015, vol. 10, pp. 44–49.Google Scholar
  5. Espitalié, J., Deroo, G., and Marquis, F., La pyrolyse Rock-Eval et ses applications, Oil Gas. Sci. Technol., 1985, vol. 40, no. 5, pp. 563–579.Google Scholar
  6. Van Geet, M., Swennen, R., and Wevers, M., Quantitative analysis of reservoir rocks by microfocus X-ray computerised tomography, Sediment. Geol., 2000, vol. 132, pp. 25–36.CrossRefGoogle Scholar
  7. Goncharov, I.V. and Kharin, V.S., The use of pyrolysis in inert atmosphere at the study of organic matter in rocks, Probl. Nefti Gaza Tyumeni, 1982, no. 56, pp. 8–10.Google Scholar
  8. Kibodeaux, K.R., Evolution of porosity, permeability, and fluid saturations during thermal conversion of oil shale, in SPE Annu. Techn. Conf. Exhib., Soc. Petrol. Eng., 2014.Google Scholar
  9. Korost, D.V., Nadezhkin, D.V., and Akhmanov, G.G., Pore space in source rock during the generation of hydrocarbons, Moscow Univ. Geol. Bull., 2012, vol. 67, no. 4, pp. 240–246.CrossRefGoogle Scholar
  10. Korost, D., Korost, D., Mallants, D., Balushkina, N., et al., Determining physical properties of unconventional reservoir rocks: from laboratory methods to porescale modeling, in Proc. SPE Unconventional Res. Conf. Exhib.-Asia Pacific, 2013.Google Scholar
  11. Korost, D., Korost, D., Mallants, D., Balushkina, N., et al. Determining physical properties of unconventional reservoir rocks: from laboratory methods to pore-scale modeling, in Proc. SPE Unconventional Res. Conf. Exhib.–Asia Pacific, 2013.Google Scholar
  12. Lopatin, N.V. and Emets, T.P., Piroliz v neftegazovoi geologii (Pyrolysis in Petroleum Geology), Moscow: Nauka, 1987.Google Scholar
  13. Mehrabi, M., Pasha, M., Jia, X., and Hassanpour, A., Pore volume analysis of gas shale samples using 3-D X-ray micro tomography, in SPE Offshore Europe Conf. Exhib., 2015.Google Scholar
  14. Panahi H. Kobchenko, M., Renard, F., et al., A 4D synchrotron X-ray tomography study of the formation of hydrocarbon migration pathways in heated organic-rich shale, Available from arXiv preprint arXiv:1401.2448, 2014.Google Scholar
  15. Taud, H., Martinez-Angeles, R., Parrot, J. F., and Hernandez-Escobedo, L., Porosity estimation method by X-ray computed tomography, J. Pet. Sci. Eng., 2005, vol. 47, no. 3, pp. 209–217.CrossRefGoogle Scholar
  16. Tiwari P., Deo, M., Lin, C. L., and Miller, J. D., Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT, Fuel, 2013, vol. 107, pp. 547–554.CrossRefGoogle Scholar
  17. Vandersteen, K. Busselen, B., Van Den Abeele, K., and Carmeliet, J., Quantitative characterization of fracture apertures using microfocus computed tomography, Spec. Publ.—Geol. Soc. London, 2003, vol. 215, pp. 61–68.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • A. A. Erofeev
    • 1
  • A. A. Pachezhercev
    • 1
  • I. A. Karpov
    • 2
  • N. V. Morozov
    • 2
  • A. G. Kalmykov
    • 3
  • A. N. Cheremisin
    • 4
  • E. V. Kozlova
    • 4
  • A. Yu. Bychkov
    • 3
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudnyi, Moscow oblastRussia
  2. 2.OOO Gazpromneft NTTsSt. PetersburgRussia
  3. 3.Department of GeologyMoscow State UniversityMoscowRussia
  4. 4.Skolkovo Institute of Science and TechnologyMoscowRussia

Personalised recommendations